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1 Introduction
The aim of the lecture is to give an introduction into the fascinating area of randomized algorithms. In this chapter we will
start with an overview of some basic definitions in probability theory and present some simple probabilistic proofs. We will
then use these techniques to investigate various simple examples: a randomized identity test, randomized text searching,
randomized Quicksort, randomized search trees, a randomized algorithm to compute the smallest enclosing circle, and a
randomized distributed algorithm for synchronization.

1.0.1 Basic Notation and Inequalities

We frequently use the following notation.

• If we use “e” in formulas, we always mean the Euler number (2.71828..).

• By “log” we mean the logarithm to the base of 2. “ln” denotes the logarithm to the base of e. If we use any other
base, say b, we write “logb”.

• logk n means (log n)k.

• n! = n · (n− 1) · . . . · 2 · 1 is called n factorial. By definition, 0! = 1. For any k ≤ n, the kth descending factorial
of n is defined as n(k) = n · (n− 1) · . . . · (n− k + 1)

• For all 0 ≤ k ≤ n, (
n

k

)
=

n!

(n− k)! · k!
=
n(k)

k!
.

For every x ∈ R, ex =
∑∞
i=0

xi

i! . Using this equation, one can show that

1 + x ≤ ex for all x ∈ R

and
1− x ≤ e−x ≤ 1− x+ x2/2 for all x ∈ [0, 1].

Furthermore, (
1 +

1

n

)n
≤ e ≤

(
1 +

1

n

)n+1

for all n ∈ N, implying that limn→∞(1 + 1/n)n = e. Also,(
1− 1

n

)n
≤ 1

e
≤
(

1− 1

n

)n−1

for all n ∈ N, implying that limn→∞(1− 1/n)n = 1/e.
Frequently, one wishes to express n! or

(
n
k

)
by terms based on standard operations. For all n ∈ N, Stirling’s formula

says that

n! = α(n)
√

2πn
(n
e

)n
where α(n) ∈ [1, e1/12n] .
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Often, the simpler inequality (n/e)n ≤ n! ≤ nn is used.
Stirling’s formula implies that for all k, n ∈ N with k < n,(

n

k

)
= β(n, k)

(n
k

)k ( n

n− k

)n−k√
n

2πk(n− k)
where β(n, k) ∈ [e−1/6k, 1] .

Often, the simpler inequality (n/k)k ≤
(
n
k

)
≤ (en/k)k is used.

1.0.2 Basic Counting

Many combinatorial problems can be viewed as drawing balls. Consider the problem of determining the number of ways
of drawing k balls one after the other out of n balls, numbered from 1 to n. The most important cases are summarized in
Figure 1.

ordered unordered

with replacement nk
(
n+k−1

k

)
without replacement n(k)

(
n
k

)
Figure 1: Number of outcomes of drawing k out of n balls

1.1 Basic definitions in probability theory
Consider an arbitrary discrete random experiment (like throwing a coin), and let Ω = {w1, w2, w3, . . .} be the sample
space, i.e., the set of all outcomes of this random experiment.

• An event is an arbitrary subset of Ω, and

• event A is true for some outcome w ∈ Ω if and only if w ∈ A.

The function p : Ω → [0, 1] is called a probability distribution over the sample space if and only if
∑
w∈Ω p(w) = 1. In

this case, (Ω, p) forms a probability space. p naturally extends to events in a sense that for all events A ⊆ Ω we define
p(A) =

∑
w∈A p(w). When p is clear from the context, we will use Pr[·] instead of p(·). The requirements on a probability

space imply the following principle.

Theorem 1.1 (Inclusion-Exclusion Principle) Let A1, . . . , An be an arbitrary collection of events. Then it holds that

Pr[

n⋃
i=1

Ai] =

n∑
k=1

(−1)k+1
∑

i1<i2<...<ik

Pr[

k⋂
j=1

Aij ]

Important special cases of this theorem are the so-called Boole’s inequalities:

• Pr[
⋃n
i=1Ai] ≤

∑n
i=1 Pr[Ai]

• Pr[
⋃n
i=1Ai] ≥

∑n
i=1 Pr[Ai]−

∑
1≤i<j≤n Pr[Ai ∩Aj ]

Example: 2-coloring of hypergraphs

A hypergraph G = (V,E) has the property that every hyperedge e ∈ E can be an arbitrary subset of V . A 2-coloring of
G is an arbitrary mapping f : V → {0, 1} that assigns one out of two colors (here, 0 and 1) to every node. Which class of
hypergraphs allows a 2-coloring so that no hyperedge contains only nodes of one color, i.e., it is monochromatic?

Theorem 1.2 For every hypergraph G with m hyperedges of size ≥ logm+ 2 there is a 2-coloring so that no hyperedge
is monochromatic.
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Proof. Let n = |V | and m = |E|. Suppose that we use a random experiment in which we have a uniform probability
distribution on the set F of mappings f : V → {0, 1}, i.e., Ω = F with Pr[f ] = 1/2n for all f ∈ Ω. For each
i ∈ {1, . . . ,m} let Ai be the event (i.e., the set of all mappings f ∈ F with the property) that the hyperedge ei is
monochromatic. Since there are exactly 2 · 2n−|ei| many mappings f with ei being monochromatic, |Ai| = 2 · 2n−|ei| and
therefore,

Pr[Ai] =
∑
f∈Ai

Pr[f ] = 2 · 2n−|ei| · 2−n = 2−|ei|+1

Moreover, it follows from Boole’s inequalities that

Pr[A1 ∪ . . . ∪Am] ≤
m∑
i=1

Pr[Ai] ≤
m∑
i=1

2−(logm+1) =
1

2

Thus,

Pr[Ā1 ∩ . . . ∩ Ām] = 1− Pr[A1 ∪ . . . ∪Am] ≥ 1

2

which implies that there exists a 2-coloring for G so that no hyperedge is monochromatic. ut

How can we use such a probabilistic proof in order to quickly find such a 2-coloring? This turns out to be relatively
easy in this case and will be discussed in the tutorials.

Conditional probability

The conditional probability that the event B is true under the assumption that A is true is given by

Pr[B | A] =
Pr[A ∩B]

Pr[A]

From this it follows that
Pr[A ∩B] = Pr[A] · Pr[B | A]

and, in general,

Pr[A1 ∩ . . . ∩An] =

n∏
i=1

Pr[Ai | A1 ∩ . . . ∩Ai−1]

Since
Pr[A ∩B] = Pr[A] · Pr[B | A] = Pr[B] · Pr[A | B]

we obtain Bayes’ formula:

Pr[A | B] =
Pr[A] · Pr[B | A]

Pr[B]

Two events A and B are

• independent if Pr[B | A] = Pr[B],

• negatively correlated if Pr[B | A] ≤ Pr[B], and

• positively correlated if Pr[B | A] ≥ Pr[B].

According to Bayes’ formula these properties are symmetric. Hence, for independent events, Pr[A ∩B] = Pr[A] · Pr[B].
Suppose that the sample space Ω can be represented as Ω = Ω1 × . . . × Ωk with probability distributions p1 : Ω1 →

[0, 1], . . . , pk : Ωk → [0, 1] so that for each outcome w = (w1, . . . , wk) ∈ Ω it holds that Pr[w] =
∏k
i=1 pi(wi). Then it is

easy to show that the outcomes for different subspaces Ωi are independent and therefore, events over different subspaces
are independent. That is, for arbitrary events A1 ⊆ Ω1 and A2 ⊆ Ω2 it holds for A′1 = A1 × Ω2 and A′2 = Ω1 ×A2 that

Pr[A′1 ∩A′2] = Pr[A′1] · Pr[A′2] .
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Example: balls into bins

Suppose that we have n balls and n bins. Consider the random experiment that every ball is thrown uniformly and
independently at random into one of these bins.

Theorem 1.3 The probability that bin 1 contains at least one ball is at least 1/2.

Proof. In our case, the sample space Ω can be represented as Ω = Ω1 × . . . × Ωn with Ωi = {1, . . . , n} and probability
distributions pi : Ωi → [0, 1] with pi(w) = 1/n for all w ∈ Ωi (because the balls are thrown uniformly at random). Also,
for any outcome w = (w1, . . . , wn) ∈ Ω it holds that Pr[w] =

∏n
i=1 pi(wi) (because the balls are thrown independently at

random). Let Ai be the event that ball i is thrown into bin 1. Then it holds that Pr[Ai] = 1/n and therefore, Pr[Ai∩Aj ] =
Pr[Ai] · Pr[Aj ] = 1/n2 for all i 6= j. Thus,

Pr[

n⋃
i=1

Ai] ≥
n∑
i=1

Pr[Ai]−
∑

1≤i<j≤n

Pr[Ai ∩Aj ]

=

n∑
i=1

1

n
−

∑
1≤i<j≤n

1

n2

= 1−
(
n

2

)
1

n2
≥ 1− 1

2
=

1

2

ut

Note that the exact value of the probability is 1− (1− 1/n)n = 1− 1/e for n→∞.

Random variables

A function X : Ω → R is called a random variable. If X : Ω → {0, 1}, we call X a binary random variable or simply
indicator. In order to simplify notation, we define

Pr[X = x] = Pr[{w ∈ Ω : X(w) = x}]

Analogously,

Pr[X ≤ x] = Pr[{w ∈ Ω : X(w) ≤ x}] und Pr[X ≥ x] = Pr[{w ∈ Ω : X(w) ≥ x}]

For two random variables X and Y we say that X stochastically dominates Y if and only if Pr[X ≥ z] ≥ Pr[Y ≥ z] for
all z.

Expectation

The expectation of a random variable X : Ω→ R is defined as

E[X] =
∑
w∈Ω

X(w) · Pr[w]

Therefore, also E[X] =
∑
x∈X(Ω) x · Pr[X = x]. For the special case that X : Ω→ N, we obtain

E[X] =
∑
x∈N

Pr[X ≥ x]

and for an indicator X , E[X] = Pr[X = 1]. Basic properties of the expectation are:

• X is non-negative: E[X] ≥ 0

• |E[X]| ≤ E[|X|]

• E[c ·X] = c · E[X]
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• E[X + Y ] = E[X] + E[Y ], which is also known as the linearity of expectation.

Two random variables X and Y are (stochastically) independent if for all x, y ∈ R it holds that

Pr[X = x | Y = y] = Pr[X = x]

Theorem 1.4 If X and Y are stochastically independent, then E[X · Y ] = E[X] · E[Y ].

The proof is an exercise.

Probability bounds

The most basic probability bound is the following:

Theorem 1.5 For any random variable X ,

Pr[X < E[X]] < 1 and Pr[X > E[X]] < 1

This theorem suffices to prove the existence of certain combinatorial objects.

Example: MaxCUT

Let G = (V,E) be an undirected graph. For a subset U ⊆ V we call Ū = V \ U the complement of U and

(U, Ū) = {{v, w} ∈ E | v ∈ U ∧ w ∈ Ū}

the cut separating U from Ū in G. In the MaxCUT problem we are given a graph G = (V,E), and the task is to find a
subset U ⊆ V that maximizes |(U, Ū)|. This problem is known to be NP-hard in general, but there is always a cut that is
relatively close to |E|, which is the maximum cut size we can expect.

Theorem 1.6 For every undirected graph G = (V,E) with m edges there is a cut of size at least m/2.

Proof. Suppose that we toss a coin independently for each node in V with Pr[heads] = Pr[tails] = 1/2. All nodes with
outcome ”heads” are assigned to U and all other nodes are assigned to Ū . For each edge e = {v, w} ∈ E let the binary
random variable Xe be 1 if and only if e ∈ (U, Ū). Since the outcomes of the coin tosses for v and w are independent,

Pr[Xe = 1] = Pr[(heads,tails)] + Pr[(tails,heads)] = 1/4 + 1/4 = 1/2 .

Let X be the size of the cut (U, Ū). Then it holds that X =
∑
e∈E Xe and therefore,

E[X] =
∑
e∈E

E[Xe] = m · 1/2 = m/2 .

From Theorem 1.5 it follows that there is a cut of size at least m/2. ut

Often concrete probability bounds are needed for the deviation from the expectation. The most well-known inequality
for this is Markov’s inequality.

Theorem 1.7 (Markov’s Inequality) Let X be an arbitrary non-negative random variable. Then it holds for all k > 0
that

Pr[X ≥ k] ≤ E[X]

k

Proof.
E[X] =

∑
x∈X(Ω)

x · Pr[X = x] ≥
∑

x∈X(Ω),x≥k

x · Pr[X = x] ≥ k · Pr[X ≥ k]

ut

This inequality can be generalized in the following way.
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Theorem 1.8 (General Markov’s Inequality) LetX be an arbitrary random variable and g be an arbitrary function that
is non-negative and monotonically increasing on the values in X(Ω). Then it holds for all k ∈ X(Ω) that

Pr[X ≥ k] ≤ E[g(X)]

g(k)

Proof.
E[g(X)] =

∑
x∈X(Ω)

g(x) · Pr[X = x] ≥
∑

x∈X(Ω),x≥k

g(x) · Pr[X = x] ≥ g(k) · Pr[X ≥ k]

ut

From the Markov inequality we can also derive the well-known Chebychev inequality. The variance of a random
variable X is defined as V[X] = E[(X − E[X])2].

Theorem 1.9 (Chebychev’s Inequality) Let X be an arbitrary random variable. For all k > 0,

Pr[|X − E[X]| ≥ k] ≤ V[X]

k2

Proof. From the Markov inequality it follows that

Pr[|X| ≥ k] = Pr[X2 ≥ k2] ≤ E[X2]/k2

Substituting X by X − E[X] results in the theorem. ut

More powerful inequalities are the so-called Chernoff bounds.

Theorem 1.10 (Chernoff Bounds) Let X1, . . . , Xn be independent binary random variables. Let X =
∑n
i=1Xi and

µ = E[X]. Then it holds for all δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−δ

2µ/(2(1+δ/3)) ≤ e−min{δ2,δ}µ/3

and for all 0 < δ < 1 that

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−δ

2µ/2

Proof. We will only show the first inequality. Let pi = Pr[Xi = 1] = E[Xi] for all i. According to the Markov inequality
it holds for every function g(x) = eh·x with h > 0 and every δ ≥ 0 that

Pr[X ≥ (1 + δ)µ] ≤ e−h(1+δ)µ · E[eh·X ] (1)

Since X1, . . . , Xn are independent, it follows from Theorem 1.4 that

E[eh·X ] = E[eh(X1+...+Xn)] = E[eh·X1 · · · eh·Xn ] =
∏n
i=1 E[eh·Xi ]

=

n∏
i=1

(pie
h + (1− pi)) =

∏n
i=1(1 + pi(e

h − 1))

≤
n∏
i=1

e pi(e
h−1) since 1 + x ≤ ex for all x

= eµ(eh−1) .

Together with inequality (1) this implies that

Pr[X ≥ (1 + δ)µ] ≤ e−h(1+δ)µ · eµ(eh−1) = e−(1+h(1+δ)−eh)µ (2)
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The right hand side of (2) is minimal for h = h0 with h0 = ln(1 + δ). Inserted into (2) we obtain

Pr[X ≥ (1 + δ)µ] ≤ (1 + δ)−(1+δ)µ · eδ·µ =

(
eδ

(1 + δ)1+δ

)µ
The inequality for Pr[X ≤ (1− δ)µ] is an exercise. ut

For more details on probability theory see, for example, [1]. Now we have a sufficient foundation to consider some
more advanced examples in the next section.
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