
5 Probability amplification
We have already seen in the second chapter that we can increase the success probability of randomized algorithms drasti-
cally through multiple runs. In this chapter we will present some refined methods in order to increase the success proba-
bility. In the first method, specific steps of the algorithm are repeated, instead of repeating the whole algorithm, in order
to obtain a better running time. The second method is based on the so-called Lovász Local Lemma. This lemma in its
original form just allows one to prove the existence of solutions to certain problems, but since several years also algorithms
are known that can find these solutions efficiently.

5.1 Amplification through local repetition
We illustrate our first technique by applying it to an algorithm for the MINCUT problem. In the MINCUT problem we
are given an undirected graph G = (V,E) and we are looking for a subset U ⊆ V such that |(U, Ū)|, i.e. the number of
edges of the cut (U, Ū), is minimal. This problem can be solved in polynomial time by using network flow algorithms. We
present here a simple alternative algorithm that does not need algorithms for network flow or linear optimization.

A simple algorithm

In the following we assume that G = (V,E) is a multigraph, i.e. there can be multiple edges between a pair of nodes. The
basic idea of our algorithm is as follows:

In each step, pick a random edge {u, v} from the current multigraph. This edge will be contracted, which means that
the nodes u and v will be replaced by a new node w. All edges of the form {u, x} with x 6= v and {v, x} with x 6= u are
replaced by the edge {w, x}. Edges between u and v are omitted. If there are only two nodes remaining, the edge set across
the two sets of nodes in the original graph which are represented by the remaining nodes is returned by the algorithm. See
also Figure 1.

Algorithm CONTRACT(G):
H := G
while H has more than two nodes do

choose an edge {x, y} uniformly at random from the edges in H and contract it
return the set of edges C of G that is represented by the remaining edges in H

Figure 1: The simple contraction algorithm.

The running time of the CONTRACT algorithm is O(n2) when using an efficient implementation (for example by
storing G as an adjacency matrix). Moreover, the following theorem holds.

Theorem 5.1 The cut computed by CONTRACT is a minimum cut with probability at least 1/n2.

Proof. Let K be a minimum cut in G. If during the execution of the algorithm no edge of K is contracted, then the
cut returned by the algorithm is K. We show that the probability that this happens is at least 1/n2. Let ei be the edge
contracted in round i of CONTRACT. It holds for C output by CONTRACT that:

Pr[C is a minimum cut] ≥ Pr[C = K]

= Pr[
∧

1≤i≤n−2

(ei 6∈ K)]

=
∏

1≤i≤n−2

Pr[ei 6∈ K |
∧

1≤j<i

(ej 6∈ K)]

Lemma 5.2 For 1 ≤ i ≤ n− 2 it holds that

Pr[ei ∈ K |
∧

1≤j<i

(ej 6∈ K)] ≤ 2

n− i+ 1

1

Proof. Let Hi be the graph, that results from the contraction of the edge ei. Let ni be the number of nodes and mi the
number of (original edges that are still represented by) edges in Hi. By induction on i, one can show that as long as no
edge in K is chosen, all edges in K are still present in Hi. Suppose on the contrary that the contraction of an edge e 6∈ K
removes an edge e′ ∈ K. This can only happen if e and e′ connect the same pair of nodes, but in this case e′ would have
to belong to K. Since every edge is chosen with the same probability, it holds that

Pr[ei ∈ K |
∧

1≤j<i

(ej 6∈ K)] =
|K|
mi−1

Moreover, it holds that mi−1 ≥ |K| · ni−1/2 because otherwise there would be a node in H with degree smaller than
|K|. In this case, however, the node set represented by it in G would be left by less than |K| edges, which contradicts our
assumption that K is a minimum cut. Thus, |K|/mi−1 ≤ 2/ni−1, and since ni−1 = n− i+ 1, the lemma is proven. ut

We now use Lemma 5.2 in order to complete the proof of Theorem 5.1:

Pr[C is a minimum cut] ≥
∏

1≤i≤n−2

(
1− 2

n− i+ 1

)
=

∏
1≤i≤n−2

n− i− 1

n− i+ 1
=

2

n(n− 1)
≥ 1

n2

ut

If we repeat the CONTRACT algorithm sufficiently often, we can obtain a constant success probability. More specifi-
cally, we would need Θ(n2) repetitions, with a total running time of O(n4), in order to achieve that. This running time can
be significantly reduced by adding redundancy to the contraction of graphs.

A fast algorithm

Our improvement is based on the following observation: If we run the CONTRACT algorithm until there are t nodes left
in the graph, then the probability that no edge of a minimum cut K has been contracted is at least∏

1≤i≤n−t

(
1− 2

n− i+ 1

)
=

∏
1≤i≤n−t

n− i− 1

n− i+ 1
=

t(t− 1)

n(n− 1)

Therefore, the probability that the algorithm chooses no edge of K during the first n/2 contractions is at least 1/4. Hence,
the high error probability results primarily from the last contractions of the algorithm. On the other hand, the algorithm
runs faster on smaller graphs than in larger ones, i.e. we can also allow more trials to happen for smaller graphs. An
effective method to implement this is presented in Figure 2.

Algorithm FASTCUT(G):
if n ≤ 6 then

compute the minimum cut by “brute force” and return it
else

t := d1 + n/
√

2e
use the CONTRACT algorithm to compute independently of each other
two graphs HA and HB with t nodes
C1 :=FASTCUT(HA)
C2 :=FASTCUT(HB)
return the smallest of C1 and C2

Figure 2: The fast contraction algorithm.

The running time T (n) of the FASTCUT algorithm is described through the recursion

T (n) = 2 · T (d1 + n/
√

2e) +O(n2)

2

By using the Master Theorem we get T (n) = O(n2 log n), which is clearly better than O(n4). Moreover it holds:

Theorem 5.3 The FASTCUT algorithm computes a minimum cut with probability Ω(1/ log n).

Proof. Let K be a minimum cut. As we have already seen, the probability that during the contraction of at most t nodes
no edge of K is chosen, is at least

t(t− 1)

n(n− 1)
=

(d1 + n/
√

2e) · dn/
√

2e
n(n− 1)

≥ 1

2

Let E(G) be the event that FASTCUT(G) computes a minimum cut, E(G,H) be the event that FASTCUT(G) computes a
minimum cut via H , and E(G→ H) be the event that the contraction from G down to H preserves a minimum cut. Then
it holds that

Pr[E(G,HA)] = Pr[E(G→ HA)] · Pr[E(HA)] ≥ 1

2
· Pr[E(HA)]

and the same holds for HB . So

Pr[E(G)] = Pr[E(G,HA) ∧ E(G,HB)]

= Pr[E(G,HA)] · Pr[E(G,HB)]

= (1− Pr[E(G,HA)]) · (1− Pr[E(G,HB)])

≤ (1− Pr[E(HA)]/2) · (1− Pr[E(HB)]/2)

and hence,
Pr[E(G)] ≥ 1− (1− Pr[E(HA)]/2) · (1− Pr[E(HB)]/2)

Let p(k) be the probability that the FASTCUT algorithm computes a minimum cut at a recursion-height of k. From the
inequality above we get

p(k) ≥ 1−
(

1− p(k − 1)

2

)2

for k ≥ 1 and p(0) = 1. We now show that p(k) ≥ 1/(k + 1) by induction. The induction basis holds due to p(0) = 1.
Let now the assumption hold for k − 1. Then we have

p(k) ≥ 1−
(

1− p(k − 1)

2

)2

≥ 1−
(

1− 1

2k

)2

=
1

k
− 1

4k2
=

(4k − 1)(k + 1)

4k2
· 1

k + 1

≥ 1

k + 1

Since the depth of the recursion for a graph with n nodes is O(log n), the theorem holds. ut

The repetition of the FASTCUT algorithm for a logarithmic number of times results (through the choice of a cut of
minimal size) in an algorithm with constant success probability.

5.2 Amplification through decomposition
In previous chapters, we have often used the following statement.

Lemma 5.4 Let A1, . . . , An be events of an arbitrary random experiment with probabilities

n∑
i=1

Pr[Ai] < 1 .

Then there exists an outcome of the random experiment such that no event is true.

3

Proof. According to the inclusion exclusion principle it holds that

Pr[A1 ∪A2 ∪ . . . ∪An] ≤
n∑
i=1

Pr[Ai] < 1

and since Pr[Ā1 ∩ Ā2 ∩ . . . ∩ Ān] = 1− Pr[A1 ∪A2 ∪ . . . ∪An], it follows that

Pr[Ā1 ∩ Ā2 ∩ . . . ∩ Ān] > 0

and the lemma is proven. ut

This statement is the best possible we can formulate for the general case, but it can be improved significantly if
more information about the dependence of the events is available. These dependencies are given through the so-called
dependency graph.

Let A1, . . . , An be an arbitrary collection of events. An undirected graph G = (V,E) with V = {1, 2, . . . , n} is called
a dependency graph of the events A1, . . . , An if for every node i and every subset S ⊆ V \ {i} that does not contain a
neighbor of i in G, it holds that Ai is independent of S, i.e. Pr[Ai |

⋂
j∈S Aj] = Pr[Ai]. This condition implies following

statement.

Lemma 5.5 Let A1, . . . , An be a collection of events and G = (V,E) their dependency graph. Then it holds for every
independent set S ⊆ V (i.e. no pair of nodes in S is connected by an edge in G) that Pr[

⋂
i∈S Ai] =

∏
i∈S Pr[Ai].

The proof is left as an exercise. In order to illustrate the definition of the dependency graph, we consider the MAXCUT
problem for a graph G = (V,E) with |E| = m.

Suppose we consider the random experiment where each node is assigned uniformly at random and independently of
the other nodes to either U or Ū , w.r.t. a cut (U, Ū). Let Ae be an event that corresponds to an edge e ∈ E. Ae is true
if and only if e does not belong to the cut. For these events we can define a dependency graph G′ = ({1, . . . ,m}, E′)
that contains a node i for each edge ei ∈ E, and for which two nodes i and j are connected by an edge if and only if
ei and ej have a node in G in common. Let us now consider an arbitrary node i in G and an arbitrary subset of nodes
S ⊆ {1, . . . ,m} \ {i} that are not connected with i in G′. Since in that case ei has no node in common with all edges
ej with j ∈ S, it obviously holds that Pr[Aei |

⋂
j∈S Aej] = Pr[Aei], i.e., G′ satisfies the conditions of the dependency

graph.
As another example, we consider the MAXSAT problem. Let φ =

∧m
i=1 Ci be an arbitrary instance of this problem,

where each Ci is a clause. Now we consider the random experiment that each boolean variable x in φ is set to true or
false uniformly at random and independently of the other variables. Let ACi

be the event that Ci is not satisfied. Then the
graph G = ({1, . . . ,m}, E) with the property that {i, j} ∈ E if and only if Ci and Cj have a common boolean variable,
obviously is a dependency graph for this random experiment.

We are now ready to present the general Lovász Local Lemma [1].

Lemma 5.6 (Lovász Local Lemma) Let A1, . . . , An be “bad” events in an arbitrary probability space. Suppose that
G = (V,E) is a dependency graph of these events and suppose there are real numbers xi ∈ (0, 1) for all 1 ≤ i ≤ n with

Pr[Ai] ≤ xi
∏

{i,j}∈E

(1− xj)

for all 1 ≤ i ≤ n. Then,

Pr[

n⋂
i=1

Āi] ≥
n∏
i=1

(1− xi) .

In particular, with positive probability no bad event Ai holds.

Proof. We first prove, by induction on s, that for any set S ⊂ {1, . . . , n}, |S| = s, and i 6∈ S,

Pr[Ai |
⋂
j∈S

Āj] ≤ xi . (1)

4

This is certainly true for s = 0. Assuming it holds for all s′ < s, we prove it for S. Set S1 = {j ∈ S | {i, j} ∈ E} and
S2 = S \ S1. Then

Pr[Ai |
⋂
j∈S

Āj] =
Pr[Ai ∩ (

⋂
j∈S1

Āj) |
⋂
`∈S2

Ā`]

Pr[
⋂
j∈S1

Āj |
⋂
`∈S2

Ā`]
. (2)

To bound the numerator, observe that since Ai is mutually independent of the events {A` : ` ∈ S2},

Pr[Ai ∩ (
⋂
j∈S1

Āj) |
⋂
`∈S2

Ā`] ≤ Pr[Ai |
⋂
`∈S2

Ā`]

= Pr[Ai] ≤ xi
∏

{i,j}∈E

(1− xj) . (3)

The denominator, on the other hand, can be bounded by the induction hypothesis. Indeed, suppose S1 = {j1, j2, . . . , jr}.
If r = 0, then the denominator is 1, and (1) follows. Otherwise

Pr[
⋂
j∈S1

Āj |
⋂
`∈S2

Ā`] =

r∏
k=1

(
1− Pr[Ajk | Āj1 ∩ . . . ∩ Ājk−1

∩ (
⋂
`∈S2

Ā`)]

)

≥
r∏

k=1

(1− xjk) ≥
∏

(i,j)∈E

(1− xj) . (4)

Substituting (3) and (4) into (2), we conclude that Pr[Ai |
⋂
j∈S Āj] ≤ xi, completing the proof of the induction.

The assertion of Lemma 5.6 now follows easily, as

Pr[

n⋂
i=1

Āi] =

n∏
i=1

1− Pr[Ai |
i−1⋂
j=1

Āj]


≥

n∏
i=1

(1− xi) .

ut

There exists a simpler version of the Local Lemma that suffices for many cases. In this version it is assumed that the
maximum degree of the dependency graph is d.

Lemma 5.7 (Lovász Local Lemma, symmetric case) Let A1, . . . , An be events in an arbitrary random experiment and
let G = (V,E) be a dependency graph of these events. If Pr[Ai] ≤ p for all 1 ≤ i ≤ n, G has a maximum degree of d and

ep(d+ 1) ≤ 1 (5)

then Pr[
⋂n
i=1 Āi] > 0.

Proof. The proof is left as an exercise. ut

Let us compare now Lemma 5.7 with Lemma 5.4. In Lemma 5.4 we would need the condition p < 1/n for the n
events, whereas for Lemma 5.7 it is only required that p ≤ 1/(e(d + 1)) independent of n. For this reason, Lemma 5.6
is called the Lovász Local Lemma. The constant e in inequality (5) of Lemma 5.7 is, in general, best possible [3]. In the
following we present various applications of the local lemma. For these applications no alternative proofs are known to the
local lemma.

5.3 Examples
Coloring of hypergraphs

A hypergraph is a tuple H = (V,E), that consists of a set V and a set of hyperedges E. A hyperedge can be an arbitrary
subset of V . Hypergraphs can therefore be considered as a generalization of regular graphs.

5

A hypergraphH is called 2-colorable if there is a way to color the nodes by using two colors so that for every hyperedge
there is at least one node of each color. If this is not the case for a hyperedge e, then we call e monochromatic. The Lovász
Local Lemma allows us to formulate the following statement about the 2-colorability of hypergraphs.

Theorem 5.8 Let H be an arbitrary hypergraph with the property that every hyperedge contains at least k nodes and
overlaps (i.e. has a node in common) with at most d other hyperedges. If e(d+ 1) ≤ 2k−1, then H is 2-colorable.

Proof. We consider the random experiment where each node selects one of the two colors uniformly at random and
independently from the other nodes. For each hyperedge e ∈ E, let Ae be the event that is true if and only if e is
monochromatic. Obviously, it holds that

Pr[Ae] = 2 · 1

2|e|
≤ 1

2k−1

Furthermore, each event Ae depends only on the events Ae′ with e ∩ e′ 6= ∅. I.e., we can create a dependency graph of
the events with degree at most d. If e(d + 1) ≤ 2k−1, then according to the Local Lemma, there exists an outcome of
our random experiment so that no event Ae is true, i.e., no hyperedge is monochromatic. Hence, for e(d+ 1) ≤ 2k−1 the
hypergraph is 2-colorable. ut

Satisfiability

In the satisfiability problem SAT we have a boolean formula Φ in CNF, and the problem is to determine if Φ is satisfiable
or not. The Local Lemma enables us to prove the following statement.

Theorem 5.9 Let Φ be an arbitrary boolean formula in CNF where each clause contains at least k literals, and where
every clause has variables in common with at most d other clauses. If e(d+ 1) ≤ 2k, then Φ is satisfiable.

Proof. We consider the random experiment where every boolean variable x in Φ is set to true or false uniformly at random
and independently of the other variables. For every clause C in Φ let AC be the event that is true if and only if C is not
satisfied. Obviously, it holds that Pr[AC] = (1/2)|C| ≤ 1/2k. Furthermore, each event AC depends only on the events
AC′ where C ′ has a variable in common with C. That means that we can define a dependence graph of the events AC with
degree at most d. If e(d+ 1) ≤ 2k, then according to the Local Lemma there exists an outcome of our random experiment
so that no event AC is true, i.e., all clauses are satisfied. Hence, for e(d+ 1) ≤ 2k the formula Φ is satisfiable. ut

5.4 An efficient LLL algorithm
Let P be a finite collection of mutually independent random variables in a fixed probability space Ω. We will consider
events A that are determined by the values of some subset S ⊆ P of these variables. Clearly, if A is determined by P , then
there is a unique minimal subset S ⊆ P that determines A. We denote this set of variables by vbl(A). Let A be a finite
family of events in Ω determined by P . We define the dependency graph G = GA for A to be the graph on vertex set A
with an edge between events A,B ∈ A if A 6= B and vbl(A) ∩ vbl(B) 6= ∅. For A ∈ A we write Γ(A) = ΓA(A) for
the neighborhood of A in G. Note that Γ(A) satisfies the requirement on a dependency graph as A is determined by the
variables in vbl(A) and the events in A \ ({A} ∪ Γ(A)) are determined by the rest of the variables in P .

Given the family A of events as above our goal is to efficiently find such a solution that violates all events in A. The
algorithm we suggest (see Figure 3) is as simple and natural as it can get: We start with a random outcome in Ω and
maintain a value vP of each variable P ∈ P . We check whether some event in A is still satisfied. If so, we arbitrarily
pick a satisfied event A ∈ A and sample new random values for the variables in vbl(A) that A depends on, each one
independently and according to its probability distribution, while not changing the values of the variables in P \ vbl(A).
We call this a resampling of the event A. We continue resampling true events until no such event exists anymore. We will
prove that this simple algorithm quickly terminates, that is, it quickly reaches a set of values for the variables that violate
all of the events in A if the conditions of the Local Lemma are met.

The efficiency of the method clearly depends on whether random values for each variable can be efficiently sampled
and whether they can be efficiently checked against the given events. This is the case for almost all known applications of
the lemma. We will analyze the efficiency of the algorithm in terms of the expected number of times an event A ∈ A is
resampled.

6

Algorithm FastLLL(P,A):
for all P ∈ P do

vP := a random value for P
while ∃A ∈ A: A is satisfied for (P = vP)P∈P do

pick an arbitrary satisfied event A ∈ A
for all P ∈ vbl(A) do

vP := a new random value for P
return (vP)P∈P

Figure 3: The fast LLL algorithm.

Theorem 5.10 (Moser and Tardos [2]) Let P be a finite set of mutually independent random variables in a probability
space. Let A be a finite set of events determined by these variables. If there exists a mapping x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈ΓA(A)

(1− x(B))

then there exist values for the variables in P so that all events in A are violated. Moreover, the randomized algorithm
described above resamples an event A ∈ A at most an expected x(A)/(1 − x(A)) times before it finds such a solution.
Thus, the expected total number of resampling steps is at most

∑
A∈A

x(A)
1−x(A) .

Proof. First of all, note that the decision which satisfied event A ∈ A to correct in each step can be taken completely
arbitrarily. Let us fix any (deterministic or randomized) procedure for this selection to make the algorithm and the expected
values we consider well defined. The selection method that the algorithm uses does not matter for our analysis.

We need to record an accurate journal of what the algorithm does. Let L : N → A list the events as they have been
selected for resampling in each step. If the algorithm terminates, L is a partial mapping and defined only up to the given
total number of steps carried out. We call L the execution log (or simply log) of the algorithm. With a fixed selection
discipline as described above, L is now a random variable determined by the random choices of the algorithm.

Recall that the dependency graph G is a graph on the vertex set A where two distinct events A,A′ ∈ A are connected
if vbl(A) ∩ vbl(A′) 6= ∅ and that Γ(A) denotes the neighborhood of the vertex A in G. We also use here the inclusive
neighborhood Γ+(A) := Γ(A) ∪ {A} of a vertex A.

A witness tree τ = (T, σT) is a finite rooted tree T together with a labeling σT : V (T)→ A of its vertices with events
such that the children of a vertex u ∈ V (T) receive labels from Γ+(σT (u)). If for any pair of nodes v, w ∈ V (T) of the
same depth, σT (v) 6= σT (w), we call the witness tree proper. To shorten notation, we will write V (τ) := V (T) and for
any v ∈ V (τ), we write [v] := σT (v). Given the log L, we will now associate with each resampling step t carried out a
witness tree τL(t) that can serve as a ’justification’ for the necessity of that correction step. Let us define τ (t)

L (t) to be an
isolated root vertex labeled L(t). Then, going backwards through the log, for each i = t− 1, t− 2, . . . , 1, we distinguish
two cases. If there is a vertex v ∈ τ (i+1)

L (t) such that L(i) ∈ Γ+([v]), then we choose among all such vertices the one
having the maximum distance from the root and attach a new child vertex u to v that we label L(i), thereby obtaining the
tree τ (i)

L (t). In the selection of the maximum distance vertex, ties can be broken arbitrarily (so τL(t) may not be unique). If
there is no vertex v ∈ τ (i+1)

L (t) such that L(i) ∈ Γ+([v]), then we skip time step i and simply define τ (i)
L (t) := τ

(i+1)
L (t).

Finally let τL(t) := τ
(1)
L (t). See an example in Figure 4. We say that the witness tree τ occurs in the log L if there exists a

t ∈ N such that τL(t) = τ .

Lemma 5.11 Let τ be a fixed witness tree and L be the (random) log produced by the algorithm.

(1) If τ occurs in L, then τ is proper.

(2) The probability that τ appears in L is at most
∏
v∈V (τ) Pr[[v]].

Proof. Assume τ occurs in the log L, so we have τL(t) = τ for some t ∈ N. For a vertex v ∈ V (τ) let d(v) denote the
depth of vertex v, that is, its distance from the root, and let q(v) stand for the step of the algorithm constructing τL(t) in
which v was attached, that is, q(v) is the largest value q with v contained in τ (q)

L (t).

7

Figure 4: The dependency graph of the events A,B,C,D and a witness tree τL(8) for the log L =
A,D,B,A,C,B,D,B,C.

First, note that if q(u) < q(v) for vertices u, v ∈ V (τ) and vbl([u]) and vbl([v]) are not disjoint, then d(u) > d(v).
Indeed, when adding the vertex u to τ (q(u)+1)

L (t) we attach it to v or to another vertex of equal or greater depth. Hence, for
any two vertices u, v ∈ V (τ) at the same depth d(v) = d(u), [u] and [v] do not depend on any common variables, that is,
the labels in every level of τ form an independent set in G. In particular τ must be proper, establishing claim (1).

Consider the following procedure that we call a τ -check: In order of decreasing depth (e.g., reversed breadth first search
order) visit the vertices of τ , and for each vertex v take a set of random values of the variables in vbl([v]) (according to
their distribution, independent of possible earlier evaluations) and check if the resulting evaluation satisfies [v]. We say that
the τ -check passes if all events were satisfied when checked.

Trivially, the τ -check passes with probability exactly
∏
v∈V (τ) Pr[[v]]. The lemma follows from the observation that

whenever τ occurs in the log and we run the τ -check on the same random source, it passes, which would imply that Pr[τ
occurs in the log] ≤ Pr[τ -check passes]. For this coupling argument, we have to specify explicitly how the two algorithms
(the τ -check and the Moser-Tardos algorithm) use the random source. We assume that for each variable P ∈ P the random
source produces an infinite list of independent random samples P (0), P (1), . . ., and whenever either algorithm calls for a
new random sample of P , we pick the next unused value from this sequence. Our goal will be to show that for every node v
in τ , the τ -check and the Moser-Tardos algorithm use the sample random samples of each variable in vbl([v]), establishing
the coupling.

Let us fix a vertex v, and for P ∈ vbl([v]) let S(P) be the set of verticesw ∈ V (τ) with d(w) > d(v) and P ∈ vbl([w]).
When the τ -check considers the vertex v and samples P , the random source gives P (|S(P)|). This is because the τ -check
visits the vertices in order of decreasing depth and among the vertices with depth equal to d(v) only the label of v depends
on P , so before the τ -check considers v, it had sampled P exactly when it was considering the vertices in S(P).

Suppose now that the Moser-Tardos algorithm chooses the event [v] for resampling in step q(v). Certainly, for all
w ∈ S(P), q(w) < q(v) because otherwise d(v) must have been larger than d(w), and equal depths are not possible
because the labels in every level of τ form an independent set of G. Hence, the value of the variable P considered by the
Moser-Tardos algorithm is P (|S(P)|) as well.

Hence, if the random source produces values for the variables that cause τ to occur in the log, which means that all
events in τ were true when considered, the τ -check would pass, proving (2). ut

Let L be the log of the execution of our algorithm. For any event A ∈ A let us denote by NA the random variable that
counts how many times the event A is resampled during the execution of our algorithm, that is, the number of time steps
t with L(t) = A. Let ti denote the i-th such time step. Let TA denote the set of all proper witness trees having the root
labeled A. As we have previously demonstrated, τL(ti) ∈ TA for all i. Moreover, again for each i, the tree τL(ti) contains
exactly i vertices labeled A and thus τL(ti) 6= τL(tj) unless i = j. From this we conclude that NA not only counts the
number of occurrences of A in the log, but also coincides with the number of distinct proper witness trees occurring in C
that have their root labeled A. Thus,

NA =
∑
τ∈TA

Iτ

8

where the binary random variable Iτ is 1 if and only if τ occurs in the log. Therefore, by Lemma 5.11,

E[NA] = E

[∑
τ∈TA

Iτ

]
=
∑
τ∈TA

E[Iτ]

=
∑
τ∈TA

Pr[τ occurs in the log]

≤
∑
τ∈TA

∏
v∈V (τ)

Pr[[v]] .

To connect this bound to the Lovász Local Lemma, we will consider an appropriate branching process.
Let us fix an event A ∈ A and consider the following multitype Galton-Watson branching process for generating a

proper witness tree having its root labeled A. In the first round, we produce a singleton vertex labeled A. Then, in each
subsequent round, we consider each vertex v produced in the previous round independently and, again independently, for
each event B ∈ Γ+([v]) identical or adjacent to [v] in the dependency graph, we add to v a child node carrying the label
B with probability x(B) or skip that label with probability 1 − x(B). All these choices are independent. The process
continues until it dies out naturally because no new vertices are born in some round (depending on the probabilities used,
there is, of course, the possibility that this never happens).

Let x′(B) := x(B)
∏
C∈Γ(B)(1 − x(C)). For the probability that the described Galton-Watson process yields a

prescribed proper witness tree we obtain the following.

Lemma 5.12 Let τ be a fixed proper witness tree with its root vertex labeledA. The probability pτ that the Galton-Watson
process described above yields exactly the tree τ is

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x′([v]) .

Proof. For a vertex v ∈ V (τ) we denote by Wv ⊆ Γ+([v]) the set of inclusive neighbors of [v] that do not occur as a label
of some child node of v. Then clearly, the probability that the Galton-Watson process produces exactly τ is given by

pτ =
1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Wv

(1− x([u]))

)
where the leading factor accounts for the fact that the root is always born. In order to get rid of the Wv , we can rewrite this
expression in an obvious way to obtain

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

 x([v])

1− x([v])

∏
u∈Γ+([v])

(1− x([u]))


where again we have to account for the root separately. Replacing inclusive by exclusive neighborhoods, this simplifies to

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x([v])
∏

u∈Γ([v])

(1− x([u]))

 =
1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

and concludes the argument. ut

Recall that

E[NA] ≤
∑
τ∈TA

∏
v∈V (τ)

Pr[[v]] ≤
∑
τ∈TA

∏
v∈V (τ)

x′([v])

where the second equality follows from the assumption in Theorem 5.10. We further have

E[NA] ≤
∑
τ∈TA

∏
v∈V (τ)

x′([v]) =
x(A)

1− x(A)

∑
τ∈TA

pτ ≤
x(A)

1− x(A)

where the equality comes from Lemma 5.12, while the last inequality follows from the fact that the Galton-Watson process
produces exactly one tree at a time (but not necessarily one from TA since it might also grow infinite). This concludes the
proof of Theorem 5.10. ut

9

References
[1] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In A. Hajnal,

R. Rado, and V.T. Sós, editors, Infinite and Finite Sets (to Paul Erdős on his 60th birthday), pages 609–627. North-
Holland, Amsterdam, 1975.

[2] R. Moser and G. Tardos. A constructive proof of the general Lovász Local Lemma. Journal of the ACM, 57(2), 2010.

[3] Shearer. On a problem of Spencer. Combinatorica, 5:241–245, 1985.

10

