
2 Introductory examples
In this section we will use the techniques from the introduction to investigate various simple examples: a randomized iden-
tity test, randomized text searching, randomized Quicksort, randomized search trees, a randomized algorithm to compute
the smallest enclosing circle, and a randomized distributed algorithm for synchronization. More advanced data structures
and algorithms will be considered in the following sections.

2.1 A randomized identity test
We are given three n× n-matrices A, B and C, and the task is to determine whether A ·B = C. Suppose that the entries
of the matrices are from some finite field F with neutral elements 0 and 1 w.r.t. addition and multiplication.

The task can certainly be solved by computing A · B and comparing the result with C. For that one would need
Θ(n2.376...) time when using the best known algorithm for matrix multiplication [2]. We will consider instead a proba-
bilistic method by Freivalds [4] that can deliver the right answer in time O(n2) with probability at least 1/2 (see Figure 1).
Instead of checking whether A ·B = C, Freivalds’ algorithm just checks whether A(B · r) = C · r for a randomly chosen
vector r. The values y = A(B · r) and z = C · r will be used as so-called fingerprints of A ·B and C.

r := 〈vector of n independent random bits〉
x := B · r
y := A · x
z := C · r
if y 6= z then

return NO
else

return YES

Figure 1: Freivalds’ algorithm.

The runtime of Freivalds’ algorithm is certainly O(n2). Hence, it remains to prove its correctness.

Lemma 2.1 Let A, B and C be three n × n-matrices with A · B 6= C and r be a vector of n bits that are chosen
independently and uniformly at random. Then Pr[A(B · r) = C · r] ≤ 1/2.

Proof. For D = A ·B − C it holds that D 6= 0. Let y = A(B · r) and z = C · r. Then y = z if and only if D · r = 0.
Let d be the first row of D. W.l.o.g., d is non-zero and the non-zero entries of d are the first k entries d1, . . . , dk. (The

only purpose of this assumption is to simplify the proof. One can easily check that the proof can also be done without that
assumption.) The first entry of the product D · r is equal to d · r. Certainly, d · r 6= 0 implies that also D · r 6= 0. Hence,
Pr[d · r 6= 0] ≤ Pr[D · r 6= 0].

We are looking for an upper bound of the probability that d · r = 0. This is the case if and only if
∑k

i=1 diri = 0,
which is true if and only if rk = (−∑k−1

i=1 diri)/dk. For an arbitrary choice of the elements r1, . . . , rk−1 there is at most
one value for rk so that the inequality is true, which implies that Pr[d · r = 0] ≤ 1/2. Hence, Pr[d · r 6= 0] ≥ 1/2 and
therefore Pr[D · r 6= 0] ≥ 1/2. ut

Corollary 2.2 If A · B = C, then Freivalds’ algorithm always gives the right answer. Otherwise, Freivalds’ algorithm
gives the right answer with probability at least 1/2.

An error probability of 1/2 is still quite large. Can this be decreased? One way of doing that is not to choose r as a
random bit vector but a random vector from Fn. Then it follows from the condition that rk = (−∑k−1

i=1 diri) /dk in the
proof of Lemma 2.1 that Pr[d · r = 0] ≤ 1/|F| and therefore Pr[A(B · r) = C · r] ≤ 1/|F|. Hence, the error probability
decreases to 1/|F|.

Another way of reducing the error probability is to repeat Freivalds’ algorithm k times independently at random (instead
of just once). If at least one of the executions outputs NO, we output NO as well, and otherwise we output YES.

1

For each i ∈ {1, . . . , k} let the event Ei be true if and only if the i-th execution of Freivalds’ algorithm outputs “YES”.
Suppose that A ·B 6= C. Since Freivalds’ algorithm is executed independently at random,

Pr[E1 ∩ E2 ∩ . . . ∩ Ek] =
k∏

i=1

Pr[Ei] ≤ (1/2)k

i.e., the probability that the final output for A·B 6= C is YES is at most (1/2)k. If k is set to log n, then the error probability
is at most 1/n.

2.2 Text search
Next we consider two problems about comparing text strings. To simplify notation, we will focus on bit sequences. The
reader may verify that the algorithms and their analysis can easily be extended to alphabets of larger size.

First of all, we consider the problem of determining whether two bit sequences are equal, i.e., given two bit sequences
(a1 . . . an) and (b1 . . . bn), the problem is to determine whether (a1 . . . an) = (b1 . . . bn). If one interprets the bit sequences
as binary encodings of numbers, then a =

∑n
i=1 ai2i−1 and b =

∑n
i=1 bi2i−1, and the bit sequences are equal if and only

if a = b for these encodings (under the assumption that the bit sequences have the same length).
Now, imagine that a and b are stored in two different locations A and B, and the task is to determine their inequality

by exchanging as few bits as possible. Certainly, one can solve this problem deterministically by transmitting n bits. In the
following, we present a randomized algorithm that just needs to transmit O(log n) bits and that solves the problem with an
error probability of at most 1/n (see Figure 2).

p :=prime number that is randomly chosen from [1, 2n2 ln(n2)]
a :=

∑n
i=1 ai2i−1

b :=
∑n

i=1 bi2i−1

if a mod p = b mod p then
return YES

else
return NO

Figure 2: Algorithm for comparison of two bit sequences a and b.

We just need to transmit O(log n) bits because it is sufficient to send either a mod p or b mod p, and sending a number
modulo p just needs log(2n2 ln(n2)) = O(log n) bits.

For a prime number p let Fp(x) : Z → Zp be the mapping x → x mod p. The algorithm in Figure 2 checks whether
Fp(a) = Fp(b), and outputs a wrong answer if this is the case even though a 6= b. This is the case if and only if p is a
divisor of c = |a− b|, which is the starting point for the following theorem.

Theorem 2.3 Let n ≥ n0 for some sufficiently large constant n0. When choosing a random prime number p ≤ 2n2 ln(n2)
then

Pr[Fp(a) = Fp(b) | a 6= b] ≤ 1
n

Proof. We need two lemmas to show the theorem. The first one is difficult to show, so we skip its proof.

Lemma 2.4 (Chebychev) Let n ≥ n0 for some sufficiently large constant n0. Then the number π(n) of prime numbers in
{1, . . . , n} satisfies

7
8
· n

ln n
≤ π(n) ≤ 9

8
· n

ln n

Lemma 2.5 The number of prime divisors of a number at most 2n is at most n.

Proof. Every prime divisor is at least 2. Therefore, the product of n + 1 prime divisors is more than 2n. ut

Let c = |a−b|. The algorithm in Figure 2 gives a wrong answer if and only if c 6= 0 and c is divided by p. Since c ≤ 2n,
c has at most n prime divisors according to Lemma 2.5. Moreover, according to Lemma 2.4, [1, 2n2 ln(n2)] contains at

2

least n2 prime numbers, as long as n ≥ n0. Hence, the probability to choose a p so that p divides c is at most n/n2 = 1/n.
ut

Now we look at the second problem. In the so-called pattern matching problem there is a text x = x1 . . . xn and a
shorter search string y = y1 . . . ym, and the task is to determine if there is a j ∈ {1, . . . , n−m + 1} so that yi = xj+i−1

for all i ∈ {1, . . . , m}. This problem can be solved deterministically in time O(n+m) using the Knuth-Morris-Pratt [6] or
Boyer-Moore [1] algorithm, but both algorithms are not easy to understand and to analyze. We will present a randomized
algorithm that runs in the same time but is much easier to understand.

Let x(j) be the substring xj . . . xj+m−1 of length m in x. The basic idea behind the Karp-Rabin algorithm is to avoid
a direct comparison of y and x(j) and instead just compare finger prints Fp(y) and Fp(x(j)) of y and x(j). An important
observation for this is that

x(j + 1) =
m∑

i=1

x(j+1)+i−12i−1

=
1
2
(xj − xj) +

1
2

m−1∑

i=1

x(j+1)+i−12i + x(j+1)+m−12m−1

=
1
2

(
m−1∑

i=0

xj+i2i − xj

)
+ xj+m2m−1

=
1
2

(
m∑

i=1

xj+i−12i−1 − xj

)
+ xj+m2m−1

=
1
2
(x(j)− xj) + xj+m2m−1

Hence, one can compute x(j + 1) from x(j), and therefore also Fp(x(j + 1)) from Fp(x(j)) by just executing a constant
number of operations. Therefore, the algorithm in Figure 3 needs at most O(m + n) time.

p :=prime number that is randomly chosen from [1, 2n2m ln(n2m)]
y :=

∑m
i=1 yi2i−1 mod p

z :=
∑m

i=1 xi2i−1 mod p
for j := 1 to n−m do

if y = z then
return j // first position with a match

z := (z − xj)/2 + xj+m2m−1 mod p
return -1 // y does not occur in x

Figure 3: Karp-Rabin algorithm

Theorem 2.6 The Karp-Rabin algorithm outputs a wrong answer with probability at most 1/n.

Proof. Let c = |y − x(j)|. Similar to the algorithm in Figure 2, the Karp-Rabin algorithm delivers a wrong answer only
if y 6= x(j) but p is a divisor of c. c is at most 2m and therefore has at most m prime divisors. On the other hand, for
n2m ≥ n0 there are at least n2m many prime divisors in [1, 2n2m ln(n2m)]. Thus, the probability that p is a divisor of
c is at most m/(n2m) = 1/n2. Therefore, the probability that there is a j so that p is a divisor of |y − x(j)| is at most
n/n2 = 1/n. ut

2.3 Quicksort
The following algorithm is a simple randomized variant of the well-known Quicksort algorithm. For simplicity, we assume
that all numbers are pairwise different.

The runtime of the randomized Quicksort algorithm is certainly within a constant factor of the number of comparisons
performed by it. Hence, it suffices to prove the following theorem in order to show an expected runtime of O(n log n).

3

RandQSort(s1 . . . sn):
i :=random element out of {1, . . . , n}
y := si

j1 := 1; j2 := 1
for i := 1 to n do

if si < y then tj1 := si; j1 := j1 + 1
if si > y then uj2 := si; j2 := j2 + 1

return RandQSort(t) ◦ y ◦ RandQSort(u) // ◦: concatenation

Figure 4: Randomized Quicksort algorithm

Theorem 2.7 On expectation, RandQSort makes at most 2n · Hn = O(n log n) comparisons, where Hn is the n-th
harmonic number.

Proof. W.l.o.g. we assume that S = (s1, . . . , sn) is a permutation of {1, . . . , n}. We define the binary random variables

Xi,j =
{

1 if i and j are compared in the algorithm
0 otherwise

Altogether, the number of comparisons is equal to
∑

i<j Xi,j . The reason for this is that no comparison is done twice
because one of the two elements must be the pivot element y. Due to the linearity of expectation,

E


∑

i<j

Xi,j


 =

∑

i<j

E[Xi,j] =
∑

i<j

pi,j

where pi,j = Pr[Xi,j = 1].
Consider a fixed pair (i, j) with i < j. i and j can only be compared with each other if i or j is the pivot element and

none of the elements in {i, . . . , j} has been chosen as a pivot element before. Hence, we can state the following two facts:

• i and j are compared with each other if and only if i or j is selected as the first pivot element in {i, . . . , j}.

• The probability that an element k ∈ {i, . . . , j} is chosen as the first pivot element in {i, . . . , j} is the same for all
elements in {i, . . . , j}.

Hence, pi,j = 2/(j − i + 1). Therefore,

E


∑

i<j

Xi,j


 =

n−1∑

i=1

n∑

j=i+1

2
j − i + 1

=
n−1∑

i=1

n−i+1∑

k=2

2
k

=
n∑

i=2

i∑

k=2

2
k

= 2
n∑

i=1

(Hi − 1)

where Hi =
∑i

k=1 1/k is the i-th harmonic number. From ln i ≤ Hi ≤ ln i + 1 the theorem follows. ut

2.4 Successor Search
Next we introduce randomized search trees. For simplicity we will only consider binary trees. A binary tree T = (V,E)
with a key mapping f : V → U is a search tree, if for each node u with a left subtree T1 and a right subtree T2

maxv∈T1 f(v) < f(u) ≤ minw∈T2 f(w).

Randomly built search tree

At first we will evaluate the performance of search trees that are built by insertions of elements of a set S ⊆ U in a random
order. Let si be the ith smallest element in S = {s1, . . . , sn} and let π be a permutation of {1, . . . , n} chosen uniformly
at random. Based on π, we build a simple binary search tree T (i.e., each node has up to two children). For an illustration
see Fig. 5. An example is given in Fig. 6.

4

π := a permutation of {1, . . . , n} chosen uniformly at random
T := empty search tree
for i := 1 to n do

Insert(sπ(i), T) // inserts sπ(i) as a leaf in T

Figure 5: Randomly built search tree

3 3 3

3 3 3
4)

3)2)1)

5) 6)

4 1 4

1 4

2

1 4

2 6

1 4

2 6

5

Figure 6: Insertion of 1,2,3,4,5,6 in the order 3,4,1,2,6,5.

We want to determine the time of a Lookup operation for a fixed element si. Let Di be the random variable for the
length of the path from si to the root of T , i.e., the number of ancestors of si in T . We further define the indicator variable
Xi,j with Xi,j = 1 iff (if and only if) sj is an ancestor of si in T . It holds

Di =
n∑

j=1

Xi,j

and

E[Di] = E[
n∑

j=1

Xi,j] =
n∑

j=1

E[Xi,j] =
n∑

j=1

Pr[Xi,j = 1]

=
n∑

j=1

Pr[sj is ancestor of si]

To compute E[Di] we introduce the following definition.

Definition 2.8 Let S = {s1, . . . , sn} be a set of elements with pairwise distinct priorities prio(sk). A treap (Tree + Heap)
for S is a binary tree T , such that:

• T is a search tree for S.

• T is a heap concerning the priorities of S, i.e. the priority for each node in T is smaller than the priorities of its
children.

5

The next lemma characterizes the relation between priorities and the tree structure of a treap.

Lemma 2.9 Let S = {s1, . . . , sn} be a set with pairwise distinct priorities prio(sk). Then sj is an ancestor of si in the
treap T for S iff

prio(sj) = min prio(Si,j)

where min prio(Si,j) denotes the smallest priority in Si,j = {si, . . . , sj}

Proof. The proof is left as an exercise. ut

Now we will consider treaps whose priorities are given by a random permutation.

Lemma 2.10 Let π be chosen uniformly at random from the set of permutations of {1, . . . , n} and let prio(sk) = π(k).
Then,

Pr[sj is ancestor of si] =
1

|j − i|+ 1

Proof. The probability that for k ∈ {i, . . . , j} the priority π(k) is the smallest priority of all elements in Si,j is the same
for all k, due to symmetry, and thus,

1
|Si,j | =

1
|j − i|+ 1

ut

Then it holds

E[Di] =
n∑

j=1

Pr[sj is ancestor of si]

=
1
i

+
1

i− 1
+ . . . +

1
2

+
1
2

+
1
3

+ . . . +
1

n− i + 1
= Hi + Hn+1−i − 2
≤ 2 ln n

This implies the following theorem:

Theorem 2.11 If a set S of n elements is inserted in an random order in an initially empty binary search tree, then the
expected depth of a fixed node si is at most 2 ln n.

Randomized Search trees

So far we have seen that each element in a search tree has an expected depth of O(log n) if the elements are inserted
in a random order. Now we want to develop efficient search trees with an expected depth of O(log n) for any order of
insertions. We call these trees randomized search trees. We will construct the search tree so that the elements are in the
same positions as if inserted in a random order, so that we can reuse the results of randomly built search trees. We define
these search trees in the following way:

Definition 2.12 A randomized search tree for S is a treap for S in which each element s ∈ S has a priority prio(s) that is
chosen uniformly at random out of [0, 1].

Lemma 2.13 Let S = {s1, . . . , sn} be a set of elements and let prio(s1), . . . , prio(sn) be chosen uniformly at random
from [0, 1]. Then

Pr[prio(sj) = min prio(Si,j)] =
1

|j − i|+ 1

6

Proof. We assume that there are no identical priorities, that is, the probability that elements have the same priority is 0 so
that it does not have to be considered. Because each priority is chosen uniformly at random from the same set, the elements
are symmetric and the probability for each element to have the smallest priority is

Pr[prio(sj) = min prio(Si,j)] =
1

|j − i|+ 1

ut

This implies the following theorem:

Theorem 2.14 Let S a set of n elements that are stored in a randomized search tree. Then the expected depth of a node si

is
Hi + Hn+1−i − 2 ≤ 2 ln n

It remains to show how to efficiently insert elements in a randomized search tree. The insertion is analogous to the
insertion in a normal search tree. Additionally, we remember the search path and recover the heap invariant w.r.t. the
priorities by rotations along the search path. (see Fig. 7).

TreapInsert(s, prio(s), v):
if v = NULL then v := new node(s, prio(s))
else

if s < v then
TreapInsert(s, prio(s), leftchild(v))
if prio(leftchild(v)) < prio(v) then RotateRight(v)

else
if s > v then

TreapInsert(s, prio(s), rightchild(v))
if prio(rightchild(v)) < prio(v) then RotateLeft(v)

// else s is already in the tree

Figure 7: The Insert operation

Next we show how to remove elements from a randomized search tree. Here, we simply invert the Insert operation.
The element that needs to be removed is rotated downwards in the tree until it is a leaf. Then it can easily be removed (see
Fig. 8).

TreapDelete(s):
v := node for s in the treap
RootDel(v)

RootDel(v):
if v is a leaf then v = NULL
else

if prio(leftchild(v)) < prio(rightchild(v)) then
RotateRight(v)
RootDel(rightchild(v))

else
RotateLeft(v)
RootDel(leftchild(v))

Figure 8: The Delete operation.

The time it takes to remove an element is proportional to the length of the path from the root to a leaf position. Thus,

7

Theorem 2.15 In a randomized search tree with n elements the TreapInsert and TreapDelete take O(log n) time in expec-
tation.

2.5 Smallest enclosing circle
Next, we consider the following problem. Given a set P of n points p1, . . . , pn in a 2-dimensional Euclidean space, the
task is to find the smallest enclosing circle of these points. In other words, we are looking for a point s ∈ R2 so that
r = maxi ||s− pi|| is minimal, where ||s− pi|| is the Euclidean distance between s and pi.

It is easy to see that the smallest enclosing circle always exists and that it is unique. Moreover, the radius r of the
smallest enclosing circle satisfies one of the two cases:

• There are two points pi, pj ∈ P with ||pi − pj || = 2r, or

• there are three points pi, pj , pk ∈ P that lie on the circle.

With that insight, one can design a simple deterministic algorithm that computes the smallest enclosing circle: For all
triples (pi, pj , pk) determine the smallest circle that contains pi, pj and pk, and output the one with maximal radius among
all of these circles. Unfortunately, this algorithm has a runtime of O(n3). An alternative is the randomized algorithm in
Figure 9, also known as Clarkson’s algorithm.

P := {p1, . . . , pn}
while true

S :=random subset of 13 points from P
K :=smallest enclosing circle for S
if K contains all points in P then return K
Q :=multiset of all points in P that are not contained in K
P := P ∪Q // ∪ extends multiset P by Q

Figure 9: Clarkson’s algorithm for the smallest enclosing circle.

We will present a formal analysis of the algorithm later in this lecture. Here, we just want to give an intuition why the
algorithm works and why it is efficient. Let K(P) be the smallest enclosing circle of the point set P . As we have already
mentioned, there is a set B of at most 3 points in P with K(B) = K(P). Therefore, if for some subset R of P it holds that
K(R) 6= K(P), then at least one of the points in B must be outside of K(R). This means that in Clarkson’s algorithm at
least one of the points in B doubles its number of copies in P . Hence, after k rounds at least one of these points has at least
2k/3 ≈ 1.26k copies in P . So the number of these copies grows exponentially with k. On the other hand, one can show
that on expectation, not too many copies are added to P . Concretely, this number is at most 3z/13, where z is the number
of elements in P . This means that, on expectation, we will have at most (1 + 3/13)z ≈ 1.23z many points in P . (The
3 comes from the size of B and the 13 from the size of the sample that we pick.) Thus, on the one hand, the number of
points in P grows by a factor of about 1.23, which means that there are about n · 1.23k points in P after k rounds. On the
other hand, after k rounds there is a point that has at least 1.26k copies in P . No matter how large n, due to 1.26 > 1.23
eventually there are more copies than there are points in P , a contradiction. Hence, the only way to resolve this paradox is
that the algorithm terminates before getting to this point.

Therefore, on expectation, Clarkson’s algorithm needs at most O(log n) rounds to terminate. With a clever imple-
mentation (store the copies of points by using counters), a single round just takes O(n) time so that the overall runtime
is O(n log n). This is much better than the runtime O(n3) obtained by the deterministic algorithm. One can even get a
randomized (but more complex) algorithm with runtime O(n). The details for that will be given later in this lecture.

2.6 Distributed synchronization
At the end of this chapter we will consider a problem in the area of distributed algorithms. Suppose that we have n
continuously running processes, P1, . . . , Pn, that become active every t time steps. The problem is to synchronize the
times at which these processes become active. There is no global time, but we assume that every process runs at the same
speed and that it can execute the following operations:

8

• diff(Pj): outputs the time difference between the starting points of Pi and Pj (i.e., the time from the starting point
of Pi till the next starting point of Pj).

• adjust(t): delays the starting point of Pi by t time units.

One possibility to solve the synchronization problem is to select a process that determines the activation times of all other
processes. However, this method does not scale well because the chosen process could become a bottleneck, and if it fails,
the whole procedure might have to start from scratch. An alternative strategy is shown in Figure 10.

choose two random processes, Pi and Pj

t1 :=diff(Pi); t2 :=diff(Pj)
if min(t1, t− t1) < min(t2, t− t2) then

adjust(t1)
else

adjust(t2)

Figure 10: Synchronization algorithm that is continuously executed by each process.

Surprisingly, this algorithm just needs O(log n) communication rounds most of the time until all processes are syn-
chronized. This can be validated through experiments. Unfortunately, no formal analysis of this runtime bound exists so
far. For some simpler cases upper and lower bounds are already known [3, 5], but we will not cover them in this lecture.

References
[1] R. Boyer and J. Moore. A fast string search algorithm. Communications of the ACM, 20(10):762–772, 1977.

[2] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251–
280, 1990.

[3] B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler. Stabilizing consensus with the power of two choices. In
Proc. of the 23rd ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 149–158, 2011.

[4] R. Freivalds. Probabilistic machines can use less running time. In Information Processing 77, Proceedings of the IFIP Congress
1977, pages 839–842, 1977.

[5] B. Haeupler, G. Pandurangan, D. Peleg, R. Rajaraman, and Z. Sun. Discovery through gossip. In Proc. of the 24th ACM Symp. on
Parallel Algorithms and Architectures (SPAA), pages 140–149, 2012.

[6] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

9

