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Abstract: The concept of multiple graph alignment has recently been introduced as a
novel method for the structural analysis of biomolecules. Using inexact, approximate
graph-matching techniques, this method enables the robust identification of appro-
ximately conserved patterns in biologically related structures. In particular, multiple
graph alignments enable the characterization of functional protein families indepen-
dent of sequence or fold homology. This paper first recalls the concept of multiple
graph alignment and then addresses the problem of computing optimal alignments
from an algorithmic point of view. In this regard, a method from the field of evolu-
tionary algorithms is proposed and empirically compared to a hitherto existing greedy
strategy. Empirically, it is shown that the former yields significantly better results than
the latter, albeit at the cost of an increased runtime.

1 Introduction

Focusing on the identification of structural similarities of biomolecules, this paper pres-
ents the concept of multiple graph alignment (MGA) as a structural counterpart to se-
quence alignment. As opposed to homology-based methods, this approach allows one to
capture non-homologous molecules with similar functions as well as evolutionary conser-
ved functional domains. Our special interest concerns the analysis of protein structures or,
more specifically, protein binding sites, even though graph alignments can also be used for
analyzing other types of biomolecules.

The problem of comparing graphs occurs in many applications and, correspondingly, has
been studied in different research fields, including pattern recognition [5], network ana-
lysis [2] and kernel-based machine learning [6, 4]. These approaches, however, almost
exclusively focus on the comparison of two graphs, while our method, in analogy to multi-
ple sequence alignment, seeks to analyze multiple graphs simultaneously. Moreover, most
existing approaches target on exact matches between graphs or parts thereof, often resor-
ting to the concept of subgraph isomorphism [8].

This work draws on [10], in which the concept of MGA was first introduced. That paper
proposed an algorithm which employs a simple greedy strategy to construct MGAs in an
incremental way. Here, we present an alternative method using evolutionary algorithms.
As will be shown experimentally, significant improvements in terms of the quality of ali-
gnments can thus be achieved, albeit at the cost of an increased runtime.

The paper is organized as follows: Subsequent to a brief introduction to graph-based mo-



deling of protein binding sites in Section 2, we introduce the concept of a multiple graph
alignment in Section 3. The problem of computing an MGA is then addressed in Section 4,
where an evolutionary algorithm is proposed for this purpose. Section 5 is devoted to the
experimental validation of the approach, and Section 6 concludes the paper.

2 Graph-Based Modeling of Protein Binding Sites

In bio- and chemoinformatics, single biomolecules are often modeled at an abstract level
in terms of a graph G consisting of a set of (labeled) nodes V and (weighted) edges E.
In this paper, our special interest concerns the modeling of protein binding pockets. More
specifically, our work builds upon Cavbase [9], a database system for the automated detec-
tion, extraction, and storing of protein cavities (hypothetical binding pockets) from expe-
rimentally determined protein structures (available through the PDB). In Cavbase, graphs
are used as a first approximation to describe binding pockets. The database currently con-
tains 113, 718 hypothetical binding pockets that have been extracted from 23, 780 publicly
available protein structures using the LIGSITE algorithm [7].

To model a binding pocket as a graph, the geometrical arrangement of the pocket and
its physicochemical properties are first represented by predefined pseudocenters – spatial
points that represent the center of a particular property. The type and the spatial position
of the centers depend on the amino acids that border the binding pocket and expose their
functional groups. They are derived from the protein structure using a set of predefined
rules [9]. As possible types for pseudocenters, hydrogen-bond donor, acceptor, mixed do-
nor/acceptor, hydrophobic aliphatic, metal ion, pi (accounts for the ability to form π–π
interactions) and aromatic properties are considered. Pseudocenters can be regarded as
a compressed representation of areas on the cavity surface where certain protein-ligand
interactions are experienced. Consequently, a set of pseudocenters is an approximate re-
presentation of a spatial distribution of physicochemical properties.

The assigned pseudocenters form the nodes v ∈ V of the graph representation, and their
properties are modeled in terms of node labels `(v) ∈ {P1, P2 . . . P7}, where P1 stands for
donor, P2 for acceptor, etc. Two centers are connected by an edge in the graph representa-
tion if their Euclidean distance is below a certain threshold and each edge e ∈ E is labeled
with the respective distance w(e) ∈ R.1 The edges of the graph thus represent geometrical
constraints among points on the protein surface.

3 Multiple Graph Alignment

When comparing protein cavities on a structural level, one has to deal with the same muta-
tions that also occur on the sequence level. Corresponding mutations, in conjunction with
conformational variability, strongly affect the spatial structure of a binding site as well as

1An interaction distance of 11.0 Å is typically enough to capture the geometry of a binding site, and ignoring
larger distances strongly simplifies the graph representation and hence accelerates the fitness calculation.



Figure 1: Simple illustration of MGA by an approximate match of three graphs with two types of
labels (black and white). Mutual assignments of nodes are indicated by dashed lines. Note that the
second assignment involves a mismatch, since the node in the third graph is black. Likewise, the
fourth assignment involves a dummy (indicated by a box), since a node is missing in the second
graph. The rightmost picture is a graphical overlay of the three structures.

its physicochemical properties and, therefore, its graph descriptor. This is even more an
issue when it comes to the comparison of proteins that might share a common function
but lack a close hereditary relationship. Thus, one cannot expect that the graph descrip-
tors for two functionally related binding pockets match exactly. Our approach therefore
includes the following types of edit operations to account for differences between a graph
G1(V1, E1) and another graph G2(V2, E2). Insertion or deletion of a node v1 ∈ V1: A
pseudocenter can be deleted or introduced due to a mutation in sequence space. Alter-
natively, an insertion or deletion in the graph descriptor can result from a conformational
difference that affects the exposure of a functional group toward the binding pocket. Label
mismatch, i.e., a change of the label `(v1) of a node v1 ∈ V1: The assigned physicoche-
mical property of a pseudocenter can change if a mutation replaces a certain functional
group by another type of group at the same position. Node mismatch, i.e., a change of the
weight w(e1) of an edge e1 ∈ E1: The distance between two pseudocenters can change
due to conformational differences.

By assigning a cost value to each of these edit operations, it becomes possible to define
an edit distance for a pair of graph descriptors. The edit distance of two graphs G1, G2 is
defined as the cost of a cost-minimal sequence of edit operations that transforms graph G1

into G2. As in sequence analysis, this allows for defining the concept of an alignment of
two (or more) graphs. The latter, however, also requires the possibility to use dummy nodes
⊥ that serve as placeholders for deleted nodes. They correspond to the gaps in sequence
alignment (cf. Fig. 1).

Let G = {G1(V1, E1) . . . Gm(Vm, Em)} be a set of node-labeled and edge-weighted gra-
phs. Then

A ⊆ (V1 ∪ {⊥})× · · · × (Vm ∪ {⊥})

is an alignment of the graphs in G if and only if the following two properties hold: (i) for
all i = 1 . . .m and for each v ∈ Vi there exists exactly one a = (a1 . . . am) ∈ A such that
v = ai (i.e., each node of each graph occurs exactly once in the alignment). (ii) For each
a = (a1 . . . am) ∈ A there exists at least one 1 ≤ i ≤ m such that ai 6=⊥ (i.e., each tuple
of the alignment contains at least one non-dummy node).

Each a ∈ A corresponds to a vector of mutually assigned nodes from the graphsG1 . . . Gn.



Note that, by matching nodes, a mutual assignment of edges is determined in an implicit
way. To assess the quality of a given alignment, a scoring function is is used that corre-
sponds to the above-mentioned edit distance, as each graph alignment defines a set of edit
operations that have to be performed to transform one of the aligned graphs into another
entry of the alignment. Our scoring function follows a sum-of-pairs scheme, i.e., the score
s of a multiple alignment A = (a1 . . . am) is defined by the sum of scores of all induced
pairwise alignments:

s(A) =
n∑
i=1

ns(ai) +
∑

1≤i<j≤n

es(ai, aj), (1)

where the node score (ns) is given by

ns

 ai1
...
aim

 =
∑

1≤j<k≤m


nsm

nsmm
nsdummy
nsdummy

`(aij) = `(aik)
`(aij) 6= `(aik)
aij =⊥, aik 6=⊥
aij 6=⊥, aik =⊥

Comparing two edges is somewhat more difficult than comparing two nodes, as one cannot
expect to observe edges of exactly the same lengths. We consider two edges as a match if
their respective lengths, a and b, differ by at most a given threshold ε, and as a mismatch
otherwise. The edge score (es) is then given by

es
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...
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l ) /∈ El
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j
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j
l ) ∈ El

dijkl ≤ ε
dijkl > ε

where dijkl = ‖w(aik, a
j
k) − w(ail, a

j
l )‖. The parameters (i.e., nsm, nsmm, nsdummy , esm,

esmm) are constants used to reward or penalize matches, mismatches and dummies, re-
spectively. Throughout our experiments in Section 5, we used the parameters recommen-
ded in [10]: nsm = 1, nsmm = −5, nsd = −2.5, esm = 0.2, esmm = −0.1, ε = 0.2.

The problem of calculating an optimal MGA, that is, an alignment with maximal score for
a given set of graphs, is provably NP-complete. In [10], simple and effective heuristics for
the MGA problem have been devised that were found to be useful for the problem instances
that were examined. The main idea of these methods is to reduce the multiple alignment
problem to the problem of pairwise alignment (i.e., calculating an optimal graph alignment
for only two graphs) in a first step. Resorting to the idea of star-alignment, which is well-
known in sequence analysis, these pairwise alignments are subsequently merged into a
multiple alignment.

In this paper, we elaborate on the use of evolutionary algorithms as an alternative approach.
On the one hand, evolutionary optimization is of course more expensive from a compu-
tational point of view. On the other hand, the hope is that this approach will be able to
improve the solution quality, i.e., to produce alignments that are better than those obtained
by the simple greedy strategy.



4 An Evolutionary Algorithm for Multiple Graph Alignment

An evolution strategy is a special type of evolutionary algorithm (EA) that seeks to opti-
mize a fitness function, which in our case is given by the sum-of-pairs score (1). To this
end, it simulates the evolution process by repeatedly executing the following loop [3]: (i)
Initially, a population consisting of µ individuals, each representing a candidate solution,
is generated at random; µ specifies the population size per generation. (ii) In each generati-
on, λ = ν ·µ offspring individuals are created; the parameter ν is called selective pressure.
To generate a single offspring, the mating-selection operator chooses ρ parent individuals
at random and submits them to the recombination operator. This operator generates an
offspring by exchanging the genetic information of these individuals. The new individual
is further modified by the mutation operator. (iii) The offsprings are evaluated and added
to the parent population. Among the individuals in this temporary population T , the selec-
tion operator chooses the best µ candidates, which then form the population of the next
generation. (iv) The whole procedure is repeated until a stopping criterion is met.

4.1 Representation of Individuals

Regarding the representation of individuals, note that in our case candidate solutions cor-
respond to MGAs. Given a fixed numbering of the nodes of graph Gi from 1 to |Vi| (not
to be confused with the labeling), an MGA can be represented in a unique way by a two-
dimensional matrix, where the rows correspond to the graphs and the columns to the ali-
gned nodes (possibly a dummy, indicated by the number 0) of these graphs.

In the course of optimizing an MGA, the graphs can become larger due to the insertion of
dummy nodes. For the matrix representation, this means that the number of columns is in
principle not known and can only be upper-bounded by n1 + . . . + nm, where ni = |Vi|.
This, however, will usually be too large a number and may come along with an excessive
increase of the search space. From an optimization point of view, a small number of co-
lumns is hence preferable. On the other hand, by fixing a too small length of the alignment,
flexibility is lost and the optimal solution is possibly excluded.

To avoid these problems, we make use of an adaptive representation: Starting with a single
extra column filled with dummies, more such columns can be added if required or, when
becoming obsolete, again be removed (see below). Thus, our matrix scheme is initialized
with m rows and n + 1 columns, where n = max{n1, n2 . . . nm}. For each graph Gi,
a permutation of its nodes is then inserted, with dummies replacing the index positions
j > |Vi|. As an aside, we note that dummy columns are of course excluded from scoring,
i.e., the insertion or deletion of dummy columns has no influence on the fitness.



4.2 Evolutionary Operators

Among the proper selection operators for evolution strategies, the deterministic plus-
selection, which selects the µ best individuals from the union of the µ parents and the
λ offsprings, is most convenient for our purpose. In fact, since the search space of an
MGA problem is extremely large, it would be very unfortunate to loose a current best so-
lution. This excludes other selection techniques such as fitness-proportional or simulated
annealing selection.

As we use a non-standard representation of individuals, namely a matrix scheme, the com-
monly used recombination and mutation operators are not applicable and have to be ad-
apted correspondingly. Our recombination operator randomly selects ρ parent individuals
from the current population (according to a uniform distribution). Then, ρ − 1 random
numbers ri, i = 1 . . . ρ− 1 are generated, where 1 ≤ r1 < r2 < . . . < rρ−1 < m, and an
offspring individual is constructed by combining the sub-matrices consisting, respectively,
of the rows {ri−1 + 1 . . . ri} from the i-th parent individual (where r0 = 0 and rρ = m
by definition). Simply stitching together complete sub-matrices is not possible, however,
since the nodes are not ordered in a uniform way. Therefore, the ordering of the first sub-
matrix is used as a reference, i.e., the elements of the first row serve as pivot elements.
General experience has shown that recombination increases the speed of convergence, and
this was also confirmed by our experiments (see Section 5).

The mutation operator selects one row and two columns at random and swaps the entries
in the corresponding cells. To enable large mutation steps, we have tried to repeat this
procedure multiple times for each individual. As the optimal number of repetitions was
unknown in the design phase of the algorithm, it was specified as a strategy component
adjusted by a self-adaptation mechanism [3]. However, our experiments indicated that a
simple mutation operator performing only single swaps solves the problem most effective-
ly.

To adapt the length of an MGA (number of columns in the matrix scheme), it is checked
in randomly chosen intervals whether further dummy columns are needed or existing ones
have become unnecessary. Three cases can occur: (i) There exists exactly one dummy co-
lumn, which means that the current length is still optimal. (ii) There is more than one dum-
my column: Apparently, a number of dummy columns are obsolete and can be removed,
retaining only a single one. (iii) There is no dummy column left: The dummy column has
been “consumed” by mapping dummies to real nodes. Therefore, a new dummy column
has to be inserted.

4.3 Combining Evolutionary Optimization and Pairwise Decomposition

The search space of an MGA problem grows exponentially with the number of graphs,
which is of course problematic from an optimization point of view. One established strat-
egy to reduce complexity is to decompose a multiple alignment problem into several pair-
wise problems and to merge the solutions of these presumably more simple problems into



a complete solution. This strategy has already been exploited in the greedy approach, whe-
re the merging step has been realized by means of the star-alignment algorithm [10]. In
star-alignment, a center structure is first determined, and this structure is aligned with each
of the otherm−1 structures. Them−1 pairwise alignments thus obtained are then merged
by using the nodes of the center as pivot elements. As the quality of an MGA derived in
this way critically depends on the choice of a suitable center structure, one often tries every
structure as a center and takes the best result. In this case, all possible pairwise alignments
are needed, which means that our evolutionary algorithm must be called 1

2 (m2−m) times.

As star-alignment is again a purely heuristic aggregation procedure, the gain in efficiency
is likely to come along with a decrease in solution quality, compared with the original EA
algorithm. This is not necessarily the case, however. In fact, a decomposition essentially
produces two opposite effects, a positive one due to a simplification of the problem and,
thereby, a reduction of the search space, and a negative one due to a potentially suboptimal
aggregation of the partial solutions. For a concrete problem, it is not clear in advance
which among these two effects will prevail. Roughly speaking, it is well possible that
constructing good pairwise alignments and aggregating them in an ad-hoc way is better
than getting astray in a huge search space of multiple alignments.

5 Experimental Results

In a first step, we adjusted the following exogenous parameters of our EA using the se-
quential parameter optimization toolbox (SPOT) [1] in combination with suitable synthetic
data: µ, the population size; ν, the selective pressure; ρ, the recombination parameter; τ ,
the probability to check for dummy columns; selfadaption, which can assume values
{on, off}, and enables or disables the automatic step size control; initial step size,
which defines the initial step size for the mutation; if the automatic step size control is
disabled, this parameter is ignored and a constant step size of 1 is used for the mutation.

After optimizing the parameters on diverse datasets, the following parameter configuration
turned out to be well-suited for our problem class: µ = 4, ν = 15, selfadaption =
off, ρ = 4, τ = 0.35. As can be seen, a small value for the population size (only large
enough to enable recombination) is enough, probably due to the fact that local optima do
not cause a severe problem. On the other hand, as the search space is extremely large, a
high selective pressure is necessary to create offsprings with improved fitness. The self-
adaptation mechanism is disabled and, hence, the mutation rate is set to one (only two
cells are swapped by mutation). This appears reasonable, as most swaps do not yield an
improvement and instead may even produce a deterioration, especially during the final
phase of the optimization. Thus, an improvement obtained by swapping two cells is likely
to be annulled by a second swap in the same individual. Finally, our experiments suggest
that a recombination is very useful and should therefore be enabled. The probability τ
is set to a relatively high value due to avoiding long times of stagnation because of an
insufficient alignment length.



5.1 Mining Protein Binding Pockets

We examined the performance of our algorithms on a data set consisting of 74 structures
derived from the Cavbase database. Each structure represents a protein cavity belonging
to the protein family of thermolysin, bacterial proteases frequently used in structural pro-
tein analysis and annotated with the E.C. number 3.4.24.27 in the ENZYME classification
database. The data set is suited for our purpose, as all cavities belong to the same enzy-
me family and, therefore, evolutionary related, highly conserved substructures ought to
be present. On the other hand, with cavities (hypothetical binding pockets) ranging from
about 30 to 90 pseudocenters and not all of them being real binding pockets, the data set
is also diverse enough to present a real challenge for graph matching techniques.

We produced 100 graph alignments of size 2, 4, 8, 16 and 32, respectively, for randomly
chosen structures, using the greedy heuristic (Greedy), our evolutionary algorithm with op-
timized parametrization (EA), and in combination with a star-alignment procedure (EA∗).
As a measure of comparison, we derived the relative improvement of the score (1),

s(A′)− s(A)
min{|s(A′)|, |s(A)|}

, (2)

whereA′ andA denote, respectively, the alignment produced by EA (or EA∗) and Greedy.
This measure is positive if the EA (EA∗) solution yields a higher score than the Greedy
solution; e.g., a relative improvement of 1 would mean an increase in score by a factor of
2 (note that s(A) < 0 is possible).

The results are summarized in Fig. 2. As can be seen, the EA solutions are never worse
and often significantly better than the Greedy solutions. In terms of runtime,2 it is clear
that Greedy is still more efficient. Yet, a good compromise between solution quality and
efficiency is achieved by EA∗, as the runtime is much better than for EA, especially for a
larger number of graphs.

5.2 Influence on Similarity Retrieval

Pairwise similarity scores are often used to rank the objects stored in a database with
respect to a given query object. For this purpose, the absolute similarity degrees are less
important than the relative ones. Consequently, one may ask whether our EA, in addition
to finding alignments with higher score, does actually yield rankings that differ from those
produced by the Greedy algorithm. This is not self-evident since, for example, a constant
improvement by a factor c, the same for each pairwise alignment, would not have any
influence on a ranking.

Therefore, we compared 26 protein cavities belonging to the ClpP proteasome complex
of E. coli with a set of 964 other cavities using EA and Greedy, respectively. Thus, we
generated 2 sets of 25064 pairwise alignments and ranked the alignments according to

2Intel Core 2 Duo 2.4 GHz, 2 GB memory, Windows XP SP 2 operating system.
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Figure 2: Results of the first experiment: (a) Runtimes in milliseconds (mean and standard devia-
tion) of greedy heuristic, EA using star alignment decomposition (EA∗) and pure EA. (b) Relative
improvements as defined in (2).

their score. We subsequently compared the generated rankings by computing the overlap
of top-k ranks for both algorithms. This is done by calculating the intersection I of the
top-k lists from the EA and the Greedy ranking. The results in terms of k 7→ f(k) = 1

k |I|
mappings are shown in Fig. 3. As one can see, the rankings produced by both algorithms
significantly differ with respect to their top ranks. As indicated by a value f(k) = 0, most
rankings (one ClpP cavity compared to 964 others) do not share any cavity in their top
positions. In fact, there are only three rankings that share a few cavities in their top-10
lists. Although some curves appear to start increasing rather soon, one has to keep in mind
that the real interest is most often focused on the top-positions only.

Figure 3: Topk-Cuts showing
the overlap in the top k ranks
(k = 1 . . . 964) for 26 protein
cavities each compared to 964
other cavities.



6 Conclusions

Multiple graph alignment (MGA) has recently been introduced as a novel method for
analyzing biomolecules on a structural level. Using robust, noise-tolerant graph matching
techniques, MGA is able to discover approximately conserved patterns in a set of graph-
descriptors representing a family of evolutionary related biological structures. As the com-
putation of optimal alignments is a computationally complex problem, this paper has pro-
posed an evolutionary algorithm (EA) as an alternative to an existing greedy strategy.3

Our experiments have shown the high potential of this approach and give rise to the follo-
wing conclusions: The EA is computationally more complex but significantly outperforms
the greedy strategy in terms of MGA scores. The alignments produced by the EA are bet-
ter in the sense that conserved substructures are discovered more reliably. Besides, the
improved similarity computation also leads to better performance in similarity retrieval.
Finally, a reasonable compromise between solution quality and runtime is achieved by a
combination of evolutionary optimization with binary decomposition techniques.
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