Decision Tree and Instance-Based
Learning for Label Ranking




Label Ranking (an example)

Learning customers’ preferences on cars:

customer 1 MINI > Toyota > BMW
customer 2 BMW > MINI > Toyota
customer 3 BMW > Toyota > MINI
customer 4 Toyota > MINI > BMW
new customer 2?7

where the customers could be described by feature
vectors, e.g., (gender, age, place of birth, has child, ...)
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Label Ranking (an example)

Learning customers’ preferences on cars:

customer 1 1 2 3
customer 2 2 3 1
customer 3 3 2 1
customer 4 2 1 3
new customer ? ? ?

(i) = position of the i-th label in the ranking
1: MINI 2: Toyota 3: BMW
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Label Ranki NE (more formally)

Given:

* aset of training instances {xx [k =1...m} C X
e asetoflabels L={l;|i=1...n}

* for each training instance x;: a set of pairwise preferences
of the form l; =«x, ; (for some of the labels)

Find:

* A ranking function (¥ — £ mapping) that maps each x € X
to a ranking > of L (permutation 7 ) and generalizes well
in terms of a loss function on rankings (e.g., Kendall’s tau)
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Existing Approaches

... essentially reduce label ranking to classification:

* Ranking by pairwise comparison
Flurnkranz and Hiillermeier, ECML-03

» Constraint classification (CC)
Har-Peled , Roth and Zimak, NIPS-03

* Log linear models for label ranking
Dekel, Manning and Singer, NIPS-o03

— are efficient but may come with a loss of information
— may have an improper bias and lack flexibility
— may produce models that are not easily interpretable
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Local Approach (this work)

Aage nearest neighbor

income
-

A age

decision tree

income

* Target function X — € is estimated (on demand) in a local way.
* Distribution of rankings is (approx.) constant in a local region.
e Core part is to estimate the locally constant model.
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Local Approach (this work)

* Qutput (ranking) of an instance x is generated according to a
distribution P(-|x) on €.

* This distribution is (approximately) constant within the local
region under consideration.

* Nearby preferences are considered as a sample generated by 7,
which is estimated on the basis of this sample via ML.
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Probabilistic Model for Ranking

Mallows model (Mallows, Biometrika, 1957)

exp(—60d(m, o))

P(o|0,m) =

¢(0, )
with
center ranking 7 € £
spread parameter 6 >0

and d(-) is a right invariant metric on permutations

Vr,o,v € Q, d(m,0) = d(nwv, ov).
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Inference (incomplete rankings)

Probability of an incomplete ranking:
P(E(0:)|6,m)= Y P(c]b,m)

where E(s;) denotes the set of consistent extensions of 7.

Example for label set {a,b,c}:

Extensions (o)

a>>b>c
a>b a>c>>b
c>a>>b
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Inference (incomplete rankings) cont.

The corresponding likelihood:

Po|f,7) = HP (5:)]0, 7

—H Z P(ol|b, )

1=10€E(0;)
Hi:l ZJEE(J,;) exp (—0d(o,))

k
n l—exp(—30)
(HjZI l—exI;(—JQ))
Exact MLE (7,0) = argmaxP(a]0, ™) becomes infeasible when

n is large. Approximation is needed.
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Inference (incomplete rankings) cont.

Approximation via a variant of EM, viewing the non-observed
labels as hidden variables.

e replace the E-step of EM algorithm with a maximization step
(widely used in learning HMM, K-means clustering, etc.)

1. Start with an initial center ranking (via generalized Borda count)

2. Replace an incomplete observation with its most probable
extension (first M-step, can be done efficiently)

3. Obtain MLE as in the complete ranking case (second M-step)
4. Replace the initial center ranking with current estimation
5. Repeat until convergence
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Inference

low variance

high variance

Not only the estimated ranking 7 is of interest ...

... but also the spread parameter ¢, which is a measure of precision
and, therefore, reflects the confidence/reliability of the prediction
(just like the variance of an estimated mean).

The bigger 0, the more peaked the distribution around the center
ranking.
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Label Ranking Trees

Major modifications: / \

e split criterion {a>~b>c,......,a>c>b} {c>—b>—a,......,c>—a>—b}
Split ranking set 7" into 7" and 7'~ , maximizing goodness-of-fit
Fhmama e e
7|

e stopping criterion for partition
1. treeis pure
any two labels in two different rankings have the same order

2. number of labels in a node is too small

prevent an excessive fragmentation
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Label Ranking Trees

Labels: BMW, Mini, Toyota

IF age < 35

n Montreal ( B>-M ) ( T-M>B ) ( B>-M>T )

w/\%\.

( M>B>T > ( M>T>B )
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Experimental Results

complete rankings

30% missing labels

60% missing labels

cCc  IBLR  LRT cCc IBLR  LRT CcC  IBLR  LRT
authorship | .020(2) .036(1) .882(3) 1.1 | .R01(2) .032(1) .871(3) 0.0 | 835(2) .020(1) .828(3) 0.7
bodyfat 281(1) .248(2) .117(3) 1.6 | .260(1) .223(2) .097(3) 1.7 | .224(1) .180(2) .070(3) 1.0
calhousing 250(3) .351(1) .324(2) 0.7 | .249(3) .327(1) .307(2) 0.5 | .247(3) .280(1) .273(2) 0.3
cpu-small 475(2)  506(1) .447(3) 2.3 | 474(2) 498(1) .405(3) 2.3 | .470(2) .480(1) .367(3) 1.5
elevators 768(1) .733(3) .760(2) 0.2 | .767(1) .719(3) .756(2) 0.2 | .765(1) .690(3) .742(2) 0.3
fried 009(1) .935(2) .890(3) 5.5 | .008(1) .928(2) .863(3) 5.3 | .007(1) .895(2) .809(3) 3.0
glass 846(3) .865(2) .883(1) 2.5 | .835(2) .824(3) .850(1) 2.0 | .789(2) .771(3) .799(1) 2.0
housing 660(3) .745(2) .797(1) 2.3 | 655(3) .607(2) .734(1) 2.4 | .638(1) .630(3) .634(2) 1.5
iris 836(3)  .966(1) .947(2) 1.5 | .807(3) .945(1) .909(2) 1.2 | .743(3) .882(1) .794(2) 1.5
pendigits 003(3) .044(1) .935(2) 6.2 | .002(3) .924(1) .914(2) 3.2 | .000(1) .899(2) .871(3) 2.2
segment 014(3) .959(1) .949(2) 3.8 | .011(3) .934(1) .933(2) 3.8 | .002(2) .002(3) .903(1) 2.3
stock 737(3)  .927(1) .895(2) 1.5 | .735(3) .004(1) .877(2) 1.6 | .724(3) .858(1) .827(2) 1.1
vehicle 855(2) .862(1) .827(3) 0.8 | .839(2) .842(1) .819(3) 0.9 | .810(1) .791(2) .764(3) 0.5
vowel 623(3) .900(1) .794(2) 4.6 | .615(3) .824(1) .718(2) 3.6 | .598(3) .722(1) .615(2) 3.2
wine 033(2) .949(1) .882(3) 0.8 | .011(2) .941(1) .862(3) 1.1 | .853(1) .780(2) .752(3) 0.8
wisconsin 629(1) .506(2) .343(3) 1.6 | .617(1) .484(2) .284(3) 1.5 | .566(1) .438(2) .251(3) 1.6
average rank | 2.25 T44 231 2.10 150 231 .75 .88 7.38

IBLR: instance-based label ranking

CC: constraint classification
Performance in terms of Kentall’s tau

LRT: label ranking trees
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Accura CY (Kendall’s tau)

Typical “learning curves”:

0,8 -

0,75 1 LRT

CC

Ranking performance
o
o
i
1

Probability of missing label

0,55
o 0,1 0,2 0,3 T SANTUTT WUUURU s 1S TYReuny s e

more & amount of preference information - less

Main observation: Local methods are more flexible and can exploit more
preference information compared with the model-based approach.
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Take-away Messages

* An instance-based method for label ranking using a
probabilistic model.

e Suitable for complete and incomplete rankings.

* Comes with a natural measure of the reliability of a
prediction. Makes other types of learners possible:
label ranking trees.

0 More efficient inference for the incomplete case.

0 Dealing with variants of the label ranking problem, such as
calibrated label ranking and multi-label classification.
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