Universität Paderborn

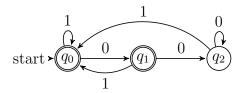
Prof. Dr. Johannes Blömer Prof. Dr. Eyke Hüllermeier

Modellierung - WS 2016/2017

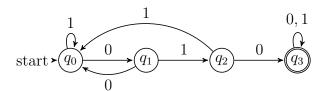
Heimübung 13 Abgabe: 6. Februar 2017 – 14:00 Uhr

(Dieser Übungszettel enthält 6 Aufgaben mit insgesamt 32 Punkten)

Hinweis: Die Lösungen der Hausaufgaben sind in die Kästen im D3-Flur einzuwerfen. Bilden Sie Gruppen von 3-4 Personen zur Lösung der Aufgaben. Die Lösung muss die Namen und Matrikelnummern derjenigen enthalten, die die Aufgaben gelöst haben, sowie die Übungsgruppennummer. Nicht getackerte Abgaben werden nicht korrigiert.


Aufgabe 1 (Grammatiken angeben)

(8 Punkte)


Geben Sie zu den folgenden endlichen Automaten jeweils an:

- Eine kontextfreie Grammatiken mit weniger als 15 Produktionen, die die vom Automaten akzeptierte Sprache erzeugt.
- Einen regulären Ausdruck, der die vom Automaten akzeptierte Sprache definiert.

1.

2.

Aufgabe 2 (Automaten)

(4 Punkte)

Geben Sie für die nachfolgenden Mengen jeweils einen deterministischen endlichen Automaten mit weniger als 7 Zuständen an, der genau diese Menge akzeptiert.

- 1. Die Menge der Wörter über dem Alphabet $\Sigma = \{a, b\}$, die die Zeichenkette abba enthalten.
- 2. Die Menge der Wörter über dem Alphabet $\Sigma = \{0,1\}$, die eine durch 3 teilbare Anzahl von Einsen enthalten

Hinweis: 0 ist durch 3 teilbar.

Aufgabe 3 (Regulärer Ausdruck, Grammatik, Automaten) (6 Punkte) Gegeben sei der folgende reguläre Ausdruck $R = a(aa|bb)^*(aa^*|bb^*)$.

- 1. Geben Sie eine kontextfreie Grammatik G = (T, N, P, S) mit L(G) = L(R) an.
- 2. Geben Sie einen deterministischen endlichen Automaten A mit weniger als 10 Zuständen an, sodass L(A) = L(R).

Aufgabe 4 (Automaten, Beweis)

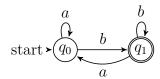
(5 Punkte)

Sei Σ ein Alphabet, und L eine endliche Sprache über Σ , d.h. $|L| < \infty$. Zeigen Sie, dass L regulär ist indem Sie einen DFA A angeben und beweisen, dass L(A) = L ist.

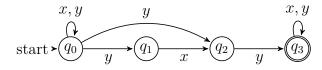
Aufgabe 5 (Automaten)

(5 Punkte)

Sei


$$L = \{ w \in \{0, 1\}^{3n} \mid n \in \mathbb{N}, \ w = x_1 y_1 z_1 \dots x_n y_n z_n, \ x_n \dots x_1 + y_n \dots y_1 = z_n \dots z_1 \} \cup \{ \epsilon \},$$

wobei + die binäre Addition von zwei Zahlen bezeichnet. Geben Sie einen deterministischen endlichen Automaten A mit weniger als 15 Zuständen an, sodass L(A) = L. $Hinweis: 110100010001 \in L$, da 3 + 5 = 8 aber $000110 \notin L$, da $2 + 2 \neq 0$.


Aufgabe 6 (Automaten)

(4 Punkte)

Betrachten Sie die den Automaten A_1 mit dem Eingabealphabet $\Sigma_1 = \{a,b\}$:

und den Automaten A_2 mit dem Eingabealphabet $\Sigma_2 = \{x, y\}$:

- 1. Ist A_1 ein deterministischer Automat? Ist A_2 ein deterministischer Automat? Begründen Sie Ihre Antworten.
- 2. Beschreiben Sie $L(A_1)$ und $L(A_2)$ jeweils durch einen regulären Ausdruck.