Probeklausur zur Vorlesung Modellierung

Für Studiengänge mit einem Modellierungsanteil von **5 ECTS**, wie zum Beispiel der Studiengang Lehramt für Haupt- und Realschule

Wintersemester 2016/2017

- Aufkleber der Klausuraufsicht -

Beachten Sie folgende Hinweise

- Die Klausur besteht aus 18 Seiten mit 8 Aufgaben. Insgesamt können Sie 80 Punkte erreichen. Die Klammerung darf nicht gelöst werden!
- Das einzige zugelassene Hilfsmittel ist ein doppelseitig handbeschriebenes Blatt (A4).
- Schreiben Sie Lösungen möglichst in die vorgegebenen Kästen.
- Werden zu einer Aufgabe zwei Lösungen angegeben oder ist die Lösung nicht eindeutig, so gilt die Aufgabe als nicht gelöst.
- Verwenden Sie zum Schreiben keine radierbaren Stifte, verwenden Sie keine Korrekturflüssigkeiten oder Korrekturroller und schreiben Sie nicht in roter oder grüner Farbe.
- Beschriften Sie jedes Blatt mit Ihrem Namen und Ihrer Matrikelnummer.

Viel Erfolg!

				: :		:			
Aufgabe	1	2	3	4	5	6	7	8	\sum
maximale Punkte	15	8	6	10	12	11	12	6	80
erreichte Punkte									

Aufgabe 1 (Mengen & Relationen) Teilaufgabe 1.1 (Beweis) / 6 Punkte Sei M eine endliche, nicht-leere Menge. Zeigen Sie mit Hilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt: $|M^n| = |M|^n .$

Matrikelnummer: Name: Teilaufgabe 1.2 (Extensional Darstellung) / 2 Punkte Geben Sie für die folgenden Mengen V und W jeweils die extensionale Darstellung und die Kardinalität an. Dabei seien $A = \{a, b\}$ und $B = \{b, c\}$. 1. $V = (A \times B) \cap (B \times A)$ |V| =2. $W = (A \setminus \{b\}) \times (A \times B)$ |W| =Teilaufgabe 1.3 (Relationen) / 4 Punkte Gegeben sei die Relation $R_1 = \{(a, b) \in \mathbb{N}^2 \mid a \text{ teilt } b \text{ ohne Rest}\}$. Ist R_1 reflexiv, antisymmetrisch, transitiv oder alternativ? Treffen Sie eine Aussage zu jeder dieser Eigenschaften. Geben Sie für jede nicht zutreffende Eigenschaft ein entsprechendes Gegenbeispiel an.

Teilaufgabe 1.4 (Funktionen)	/ 3 Punkte
Sei $M=\{1,2,3\}$ und $N=\{a,b\}$. Kann es injektive, totale Funktionen $M\to$ ja, so geben Sie die Anzahl aller möglichen injektiven, totalen Funktionen schür eine solche Funktion $g:M\to N$ an. Falls nein, so begründen Sie, warum Funktion geben kann.	owie ein Beispiel

Name:	Matrikelnummer:
-------	-----------------

Aufgabe 2 (Aussagenlogik)

Teilaufgabe 2.1 (Wahrheitstafel)

/ 6 Punkte

Gegeben seien die folgenden aussagenlogischen Formeln mit den Atomen A,B,C:

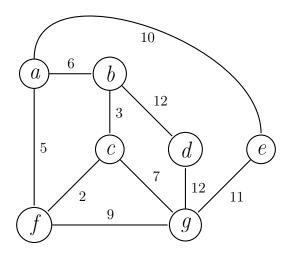
$$\alpha = (B \land \neg C) \land (A \land (C \lor \neg B))$$
$$\beta = B \to C$$

1. Vervollständigen Sie die gegebene Wahrheitstafel.

A	$\mid B \mid$	C	β	$B \land \neg C$	$C \vee \neg B$	$A \wedge (C \vee \neg B)$	α
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

2.	Ist α tautologisch, erfüllbar, fa	lsifizierbar o	der wid	lerspruchs	voll? Treffer	n Sie eine A	Aussage
	zu jeder dieser Eigenschaften.	Begründen S	Sie Ihre	Antwort.			

Teilaufgabe 2.2 (Formalisieren)	/ 2 Punkte
Formalisieren Sie die unten stehenden Beschreibungen aussagenlogisch. Nutzen Sabkürzungen:	Sie die folgender
• Es regnet (R).	
• Geno will zu Hause bleiben (H).	
• Es ist Montag (M).	
• Der Benz ist kaputt (B).	
1. Wenn es regnet, dann ist der Benz kaputt und es ist Montag.	
2. Wenn Montag ist, dann regnet es entweder oder Geno will zu Hause blei	ben.

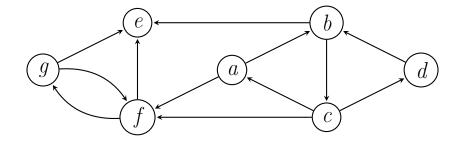

Name:	Matrikelnummer:
Aufgabe 3 (Prädikatenlogik)	/ 6 Punkte
Wir betrachten eine Situation beim American Footl Folgende Prädikate stehen zur Verfügung:	pall.
• $S(x)$ bedeutet, dass x ein Spieler ist.	
• $O(x)$ bedeutet, dass x in der Offensive spielt.	
• $D(x)$ bedeutet, dass x in der Defensive spielt.	
• $A(x,y)$ bedeutet, dass y von x abgedeckt wird	
Modellieren Sie die folgenden Zusammenhänge mit	den gegebenen Prädikaten.
1. Kein Spieler kann in der Offensive und in der	Defensive spielen.
2. Jeder Spieler, der in der Offensive spielt, wir spielt, abgedeckt.	d von einem Spieler, der in der Defensive

Aufgabe 4 (Graphen)

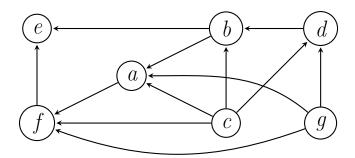
Teilaufgabe 4.1 (Ungerichtete Graphen)

/ 5 Punkte

Gegeben sei der folgende ungerichtete Graph G mit Kantenmarkierung $m:E\to\mathbb{N}$:


- 1. Geben Sie den Graphen G=(V,E) als Knoten- und Kantenmenge an. / 2 Punkte
- - 2. Existiert ein Eulerweg in G? Falls ja, so geben Sie diesen an. Falls nein, so begründen Sie Ihre Antwort. / 3 Punkte

Name:	Matrikelnummer:


Teilaufgabe 4.2 (Gerichtete Graphen)

/ 5 Punkte

1. Gegeben sei der folgende gerichtete Graph D=(V,E):

2. Gegeben sei der folgende gerichtete Graph $D=(V,E)\colon$

Zeichnen Sie den durch die Knotenmenge $V' = \{a,b,c,f,e\}$ induzierten Teilgraphen von D

Name:	Matrikelnummer:

Aufgabe 5 (Modellieren)

/ 12 Punkte

Fabian hat für sich und seine Freunde Leuchtschwerter in 7 verschiedenen Farben gekauft, die sie nun unter sich aufteilen wollen.

Wir bezeichnen die Menge der Freunde, unter denen die Leuchtschwerter aufgeteilt werden sollen mit $P = \{p_1, \ldots, p_6\}$. Wir bezeichnen die Menge der Farben der Leuchtschwerter mit $F = \{f_1, \ldots, f_7\}$. Wer welches Leuchtschwert mag, ist in der folgenden Tabelle angegeben. Dabei bedeutet ein Eintrag " \checkmark " in Zeile i und Spalte j, dass p_i das Leuchtschwert mit der Farbe f_j mag. Der Eintrag "-" bedeutet, dass p_i die Farbe f_j nicht mag.

			Leu	chts	chwe	rt-Fa	arbe	
		f_1	f_2	f_3	f_4	f_5	f_6	f_7
Fabian	(p_1)	√	√	-	√	-	-	-
Jakob	(p_2)	-	-	\checkmark	-	\checkmark	-	-
Gennadij	(p_3)	-	\checkmark	-	-	-	-	\checkmark
Sascha	(p_4)	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark
Nils	(p_5)	-	\checkmark	-	-	-	-	\checkmark
Peter	(p_6)	-	-	\checkmark	-	\checkmark	-	-

1. Geben Sie an, wie die Mengen A und B definiert sind. Erklären Sie außerdem, wann eine

Modellieren Sie den Sachverhalt der Tabelle als bipartiten Graphen $G = (A \uplus B, E)$.

Rance $\{a, b\}$ min $a \in$	A und $0 \in D$ in E enthalten ist.	/ 2 Punkte

2	. Zeichnen Sie den Graphen. Zeichnen Sie dabei Knoten aus A auf die Knoten aus B auf die rechte Seite.	linke Seite und / 2 Punkte
3	. Jeder soll nun genau ein Leuchtschwert auswählen, dessen Farbe er ma schwert darf dabei nicht mehrfach ausgewählt werden.	ag. Ein Leucht-
	Geben Sie eine Zuordnung als Menge an, die diese Anforderung erfüllt.	/ 2 Punkte

Name:	Matrikelnummer:		
4. Gennadij hat leider das Leuchtschwert mit der Farbe f_7 kaputt gemacht. Zeigen Sie: Es ist nicht möglich jedem $p_i \in P$ genau ein $f_j \in F \setminus \{f_7\}$ zuzuweisen, s dass p_i das Leuchtschwert mit der Farbe f_j mag und jeder sein eigenes Leuchtschwert bekommt.			

Aufgabe 6 (Grammatiken)

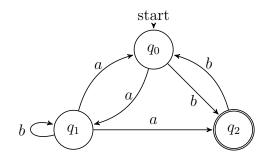
Teilaufgabe 6.1 (Grundlagen)

/ 3 Punkte

Gegeben sei die folgende Grammatik G=(T,N,P,A) mit $T=\{0,1\},\,N=\{A,B\}$ und

$$\begin{split} P &= \{A ::= 00A1 \ , \\ A ::= 0A11 \ , \\ A ::= 11B0 \ , \\ B ::= 11B0 \ , \\ B ::= B00 \ , \\ B ::= \epsilon \ \}. \end{split}$$

Ist das Wort $w_1 = 11100$ in L(G) enthalten? Begründen Sie Ihre Antwort. / 3 Punkte

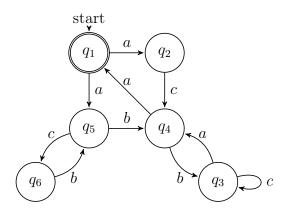

te
eben eln.
nit 0

Aufgabe 7 (Automaten)

Teilaufgabe 7.1 (NFA zu DFA)

/ 4 Punkte

Gegeben sei der folgende nichtdeterministische, endliche Automat (NFA) N:


Verwenden Sie die aus der Vorlesung bekannte Konstruktion, um N in einen deterministischen Automaten (DFA) $A = (\{a,b\}, \operatorname{Pow}(\{q_0,q_1,q_2\}), \delta^A, q_0^A, F^A)$ mit L(A) = L(N) umzuwandeln. Bestimmen Sie dafür explizit q_0^A , F^A und δ^A . Geben Sie dabei die Übergangsfunktion δ^A in tabellarischer Form an. Sie brauchen den Automaten A nicht zu zeichnen.

Name:	Matrikelnummer:			
Teilaufgabe 7.2 (DFA Konstruieren)	/ 8 Punkte			
Gegeben Sei die Sprache				
$L_{ab} = \{\omega \in \{a,b\}^* \omega \text{ beginnt mit einem } a \text{ und }$	enthält nicht die Zeichenfolge $aba\}$.			
Zeichnen Sie einen deterministischen endlichen Auhöchstens 8 Zustände hat.	ntomaten (DFA), der L_{ab} akzeptiert und			
Hinweise: Lösungen mit mehr als 8 Zuständen werden mit 0 Punkten bewertet.				

Aufgabe 8 (Regulären Ausdruck Bestimmen)

/ 6 Punkte

Gegeben sei der folgende NFA Aüber dem Alphabet $\Sigma = \{a,b,c\}$:

Geben Sie einen regulären Ausdruck R mit L(R)=L(A) an, der aus höchstens 33 Zeichen besteht.

 $\it Hinweise:$ Reguläre Ausdrücke, die aus mehr als 33 Zeichen bestehen, werden mit 0 Punkten bewertet.