

 Clusterings computed by Lloyd's algorithm or by agglomerative clustering often do not compute clusterings that practitioners find intuitive or useful.

- Clusterings computed by Lloyd's algorithm or by agglomerative clustering often do not compute clusterings that practitioners find intuitive or useful.
- Hence, there are many other clustering algorithms that try to find intuitive clusterings.

- Clusterings computed by Lloyd's algorithm or by agglomerative clustering often do not compute clusterings that practitioners find intuitive or useful.
- Hence, there are many other clustering algorithms that try to find intuitive clusterings.
- These algorithms usually do not try do optimize some objective function (like Lloyd's algorithm or agglomerative clustering.

- Clusterings computed by Lloyd's algorithm or by agglomerative clustering often do not compute clusterings that practitioners find intuitive or useful.
- Hence, there are many other clustering algorithms that try to find intuitive clusterings.
- These algorithms usually do not try do optimize some objective function (like Lloyd's algorithm or agglomerative clustering.
- DBSCAN (=density based spatial clustering of applications with noise) is an important example.

- Clusterings computed by Lloyd's algorithm or by agglomerative clustering often do not compute clusterings that practitioners find intuitive or useful.
- Hence, there are many other clustering algorithms that try to find intuitive clusterings.
- These algorithms usually do not try do optimize some objective function (like Lloyd's algorithm or agglomerative clustering.
- DBSCAN (=density based spatial clustering of applications with noise) is an important example.
- It computes geometrically well-defined clusterings.

Figure: Geometric clusters defined by densities

 $D: M \times M \to \mathbb{R}$ symmetric distance measure, $P \subset M, \epsilon > 0$, MinPts $\in \mathbb{N}$

Definition 7.1

I The ϵ -neighborhood $N_{\epsilon}(p)$ of a point p is defined as

$$N_{\epsilon}(p) = \{ q \in P : D(p,q) \le \epsilon \}.$$

- **2** $p \in P$ is called core point, if $|N_{\epsilon}(p)| \geq MinPts$.
- **3** $p \in P$ is called border point, if $|N_{\epsilon}(p)| < MinPts$.

Definition 7.2

 $P \subset M, \epsilon > 0, MinPts \in \mathbb{N}, p, q \in P$

- **1** p is directly density reachable form q (wrt. ϵ , MinPts), if
 - (a) $p \in N_{\epsilon}(q)$ and
 - (b) $|N_{\epsilon}(q)| \geq MinPts$, i.e. q is a core point.

Definition 7.2

 $P \subset M, \epsilon > 0, MinPts \in \mathbb{N}, p, q \in P$

- **1** p is directly density reachable form q (wrt. ϵ , MinPts), if
 - (a) $p \in N_{\epsilon}(q)$ and
 - (b) $|N_{\epsilon}(q)| \geq MinPts$, i.e. q is a core point.
- **2** p is density reachable from q (wrt. ϵ , MinPts), if there is a sequence of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density reachable from p_i .

Definition 7.2

 $P \subset M, \epsilon > 0, MinPts \in \mathbb{N}, p, q \in P$

- **1** p is directly density reachable form q (wrt. ϵ , MinPts), if
 - (a) $p \in N_{\epsilon}(q)$ and
 - (b) $|N_{\epsilon}(q)| \geq MinPts$, i.e. q is a core point.
- **2** p is density reachable from q (wrt. ϵ , MinPts), if there is a sequence of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density reachable from p_i .
- **3** p is density connected to point q (wrt. ϵ , MinPts), if there is a point $r \in P$ such that p and q are density reachable from r.

p border point
q core point

p directly density reachable from q q not directly density reachable from p

Definition 7.3

 $P \subset M, \epsilon > 0$, $MinPts \in \mathbb{N}$. A subset $C \subseteq P$ is called a density-based cluster (wrt. ϵ , MinPts), if

- (a) $\forall p, q \in P : (p \in C \text{ and } q \text{ density reachable from } p) \Rightarrow q \in C$
- (b) $\forall p, q \in C$: p is density connected to q.

Definition 7.3

 $P \subset M, \epsilon > 0$, $MinPts \in \mathbb{N}$. A subset $C \subseteq P$ is called a density-based cluster (wrt. ϵ , MinPts), if

- (a) $\forall p, q \in P : (p \in C \text{ and } q \text{ density reachable from } p) \Rightarrow q \in C$
- (b) $\forall p, q \in C$: p is density connected to q.

Definition 7.4

 $P \subset M, \epsilon > 0$, $MinPts \in \mathbb{N}$. Let C_1, \ldots, C_k be the clusters of P (wrt. ϵ , MinPts). A point $q \notin \bigcup_{i=1}^k C_i$ is called a noise point.

Lemma 7.5

Let C, C' be two distinct density-based clusters of point set P wrt. to ϵ and MinPts. Then the intersection $C \cap C'$ of C, C' contains only border points.

Lemma 7.5

Let C, C' be two distinct density-based clusters of point set P wrt. to ϵ and MinPts. Then the intersection $C \cap C'$ of C, C' contains only border points.

p border point

Characterization of density-based clusters

Lemma 7.6

Let $p \in P$ such that $|N_{\epsilon}(p)| \geq MinPts$. Then the set

 $O := \{o \in P : o \text{ is density-reachable from } p \text{ w.r.t } \epsilon \text{ and MinPts}\}$

is a cluster w.r.t. ϵ and MinPts.

Characterization of density-based clusters

Lemma 7.6

Let $p \in P$ such that $|N_{\epsilon}(p)| \geq MinPts$. Then the set

 $O := \{o \in P : o \text{ is density-reachable from } p \text{ w.r.t } \epsilon \text{ and MinPts}\}$

is a cluster w.r.t. ϵ and MinPts.

Lemma 7.7

Let C be a cluster of P w.r.t. ϵ and MinPts and let p be any point in C with $|N_{\epsilon}(p)| \geq MinPts$. Then

 $C = \{o \in P : o \text{ is density-reachable from } p \text{ w.r.t } \epsilon \text{ and MinPts}\}.$

Algorithm DBSCAN


```
DBSCAN(P)
```

$$i := 0, U := P \ /* \ U \ \text{unclassified}$$

repeat

| choose $p \in U$;

if $DENSREACH(p, P) \neq \emptyset$ then

| $i := i + 1, C_i := DENSREACH(p, P), U := U \setminus C_i$

else

| $U := U \setminus \{p\}$

end

until $U = \emptyset$;

 $N := P \setminus \bigcup C_j$;

return C_1, \ldots, C_k as clusters and N as set of noise points

Algorithm DENSREACH

DENSREACH(p, P)

```
if |N_{\epsilon}(p)| < \textit{MinPts} then | return \emptyset
```

until $C' \setminus F = \emptyset$;

else

$$C := \{p\}, \ C' := \{p\}, F := \emptyset;$$

/* C cluster, C'/F reached/finished corepoints

repeat

| choose $q \in C' \setminus F;$

| $C' := C' \cup \{r \in N_{\epsilon}(q) : |N_{\epsilon}(r)| \ge \text{MinPts}\};$
| $C := C \cup N_{\epsilon}(q), F := F \cup \{q\};$

end

return C

Algorithm DBSCAN

Theorem 7.8

On input a finite point set P, algorithm DBSCAN computes a partitioning of P into density-based clusters and noise points as defined in Definition 7.3 and in Definition 7.4.