Constant factor approximation for k-means

 $D(\cdot,\cdot)$ squared Euclidean distance

Goal

A polynomial time algorithm ALG for which there is a constant $\gamma \geq 1$ such that for every $P \subset \mathbb{R}^d, |P| < \infty$, and every $k \in \mathbb{N}$, algorithm ALG on input (P,k) outputs a set C of size k satisfying

$$D(P,C) \leq \gamma \cdot \mathsf{opt}_k(P)$$
.

Constant factor approximation for k-means

 $P \subset \mathbb{R}^d, D(\cdot, \cdot)$ squared Euclidean distance, $T \subset \mathbb{R}^d, x \in T$

- ▶ $N_T(x) := \{q \in P \mid \text{for all } y \in T : D(q, x) \le D(q, y)\}$
- ▶ $q \in P$: t_q := closest point in T to q
- ▶ $K \subseteq \mathbb{R}^d$ called (c, k)-approximate candidate set, if there is a set $S \subset K$, |S| = k, with $D(P, S) \le c \cdot \mathsf{opt}_k(P)$, i.e. the best k-centroid set S in K is at most c times worse than the optimal set of centroids.

Constant factor approximation for k-means

Lemma 5.1

For all finite sets $P \subset \mathbb{R}^d$, and all $k \in N$, the set P is a (2, k)-approximate candidate set for itself.

Observation

If K is a (2, k)-approximate candidate set for P and if $D(P, S) \le c \cdot \min_{T \subset K, |T| = k} D(P, T)$, then $D(P, S) \le 2c \cdot opt_k(P)$.

Stable sets

 $O := \operatorname{argmin}_{S \subset P, |S| = k} D(P, S)$, i.e. optimal set of centroids in P.

Definition 5.2

Let $S \subset P$.

1. S is called stable, if for all $s \in S, s' \in P \setminus S$

$$D(P, S - \{s\} \cup \{s'\}) \ge D(P, S).$$

2. *S* is called ϵ -stable, if for all $s \in S, s' \in P \setminus S$

$$D(P, S - \{s\} \cup \{s'\}) \ge (1 - \epsilon)D(P, S).$$

Stable sets

Observation

If S is stable, then for all $s \in S, o \in O$

$$D(P, S - \{s\} \cup \{o\}) \ge D(P, S).$$

Local improvement for *k*-means

k-means-LI(P)

choose a set $S \subset P$ of k initial centroids;

repeat

find
$$s \in S, s' \in P \setminus S$$
 with $D(P, S - \{s\} \cup \{s'\}) < (1 - \epsilon)D(P, S)$; set $S := S - \{s\} \cup \{s'\}$;

until S *is* ϵ -stable;

Local improvement for k-means

Theorem 5.3

► If S is a stable set, then

$$D(P,S) \leq 81 \cdot D(P,O)$$
.

▶ If S is a ϵ -stable set, then

$$D(P,S) \leq \left(\frac{9}{1-\epsilon}\right)^2 \cdot D(P,O).$$

Corollary 5.4

For any $\epsilon > 0$, the k-means problem can be approximated with factor $162 + \epsilon$ in time polynomial in the input size and in $1/\epsilon$.

Capturing points

 $O \subset P$, |O| = k optimal set of centroids in P, S stable set, |S| = k, called set of heuristic centroids.

- ▶ If $s \in S$ is closest point in S to $o \in O$, then s captures o, o is captured by s, and we write $s = s_o$.
- ▶ If $s \in S$ captures no element of O, then s is called lonely.

Partitioning centroids

Partition S into S_1, \ldots, S_m and O into O_1, \ldots, O_m such that

- ▶ $|S_i| = |O_i|, i = 1, ..., m$
- ▶ if $s \in S_i$, then either s is lonely or s captures all $o \in O_i$.

Partitioning centroids

Partition S into S_1, \ldots, S_m and O into O_1, \ldots, O_m such that

- ▶ $|S_i| = |O_i|, i = 1, ..., m$
- ▶ if $s \in S_i$, then either s is lonely or s captures all $o \in O_i$.

Partitioning centroids

Partition S into S_1, \ldots, S_m and O into O_1, \ldots, O_m such that

- ▶ $|S_i| = |O_i|, i = 1, ..., m$
- ▶ if $s \in S_i$, then either s is lonely or s captures all $o \in O_i$.

Partitioning centroids

Partition S into S_1, \ldots, S_m and O into O_1, \ldots, O_m such that

- ▶ $|S_i| = |O_i|, i = 1, ..., m$
- ▶ if $s \in S_i$, then either s is lonely or s captures all $o \in O_i$.

Swap pairs

 $(s_1, o_1), \ldots, (s_k, o_k)$ are called swap pairs, if

- $\triangleright \forall j : (s_i, o_i) \in \bigcup S_i \times O_i$
- each $o \in O$ is contained in exactly one pair,
- each s is contained in at most two pairs,
- ▶ for each pair (s_i, o_i) the element s_i captures no $o' \neq o_i$.

Partitioning centroids

Partition S into S_1, \ldots, S_m and O into O_1, \ldots, O_m such that

- ▶ $|S_i| = |O_i|, i = 1, ..., m$
- ▶ if $s \in S_i$, then either s is lonely or s captures all $o \in O_i$.

Observation

For each partitioning of centroids S_1, \ldots, S_m and O_1, \ldots, O_m there is a set of swap pairs.

Swap pairs

 $(s_1, o_1), \ldots, (s_k, o_k)$ are called swap pairs, if

- $\forall j: (s_i, o_i) \in \bigcup S_i \times O_i$
- ▶ each $o \in O$ is contained in exactly one pair,
- each s is contained in at most two pairs,
- ▶ for each pair (s_j, o_j) the element s_j captures no $o' \neq o_j$.

Swap pairs

 $(s_1, o_1), \ldots, (s_k, o_k)$ are called swap pairs, if

- $\forall j: (s_i, o_i) \in \bigcup S_i \times O_i$
- ▶ each $o \in O$ is contained in exactly one pair,
- each s is contained in at most two pairs,
- ▶ for each pair (s_j, o_j) the element s_j captures no $o' \neq o_j$.

Reassignments

Let (s, o) be a swap pair in set $\{(s_1, o_1), \dots, (s_k, o_k)\}$ and let C_1, \dots, C_k be the clusters for set $S = \{s_1, \dots, s_k\}$.

Reassigning points

For $S' = S - \{s\} \cup \{o\}$ we define a new clustering of P as follows

- ▶ if $q \notin N_S(s) \cup N_O(o)$, then o stays in its old cluster,
- ▶ if $q \in N_O(o)$, then q is assigned to o's cluster,
- ▶ if $q \in N_S(s) \setminus N_O(o)$ then q is assigned to the cluster belonging to s_{o_q} .

Observation

$$0 \leq \sum_{q \in N_O(o)} D(q, o) - D(q, s_q) + \sum_{q \in N_S(s) \setminus N_O(o)} D(q, s_{o_q}) - D(q, s).$$

Local improvenment for k-means - technical lemmas

Lemma 5.5

Let S be a stable set. Then

$$0 \le D(P, O) - 3D(P, S) + 2R$$

where $R := \sum_{q \in P} D(q, s_{o_q})$.

Lemma 5.6

$$R \le 4D(P, O) + (1 + 4/\alpha)D(P, S),$$

where

$$\alpha^2 := \frac{D(P,S)}{D(P,O)}.$$

Local improvenment for k-means - technical lemmas

Lemma 5.7

Let β_n, \ldots, β_n and $\gamma_1, \ldots, \gamma_n$ be two sequences of real numbers and set

$$\alpha^2 := \frac{\sum_{i=1}^n \gamma_i^2}{\sum_{i=1}^n \beta_i^2}.$$

Then

$$\sum_{i=1}^{n} \gamma_i \beta_i \le \frac{1}{\alpha} \sum_{i=1}^{n} \gamma_i^2.$$