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Introduction

Clustering techniques for data management and analysis that
classify/group given set of objects into
categories/subgroups or clusters

Clusters homogeneous subgroups of objects such that
similarity b/w objects in one subgroup is larger than
similarity b/w objects from different subgroups

Goals

1. find structures in large set of objects/data
2. simplify large data sets
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How do we measure similarity /dissimilarity of objects'?

How do we measure quality of clustering? ‘
-



Application areas
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information retrieval
data mining
machine learning
statistics

pattern recognition
computer graphics
data compression
bioinformatics

speech recognition.



Goals of this course

» different models for clustering

» many important clustering heuristics, including agglomerative
clustering, Lloyd's algorithm, and the EM algorithm

> the limitations of these heuristics
> improvements to these heuristics

» various theoretical results about clustering, including
NP-hardness results and approximation algorithms

» general techniques to improve the efficiency of heuristics and
approximation algorithms, i.e. dimension reduction techniques.



Organization

Information about this course
http://www.cs.uni-paderborn.de/fachgebiete /ag-
bloemer/lehre/2015/ws/clusteringalgorithms.html

Here you find
» announcements
» handouts
» slides
> literature

» lecture notes (will be written and appear as course progresses)

> There is only one tutorial, Thursday 13:00 -14:00.
> |t starts next week.



Prerequisites

v

design and analysis of algorithms

v

basic complexity theory

v

probability theory and stochastic

» some linear algebra



Objects

v

objects described by d different features

v

features continuous or binary

v

objects described as elements in R or {0,1}9
objects from M C R? or M C {0,1}¢

v



Distance functions

Definition 1.1
D:Mx M — R s called a distance function, if for all x,y,z € M
> D(x,y) = D(y,x) (symmetry)
» D(x,y) > 0 (positivity),
D is called a metric, if in addition,
» D(x,y) =0< x =y (reflexivity)
» D(x,z) < D(x,y)+ D(y, z) (triangle inequality)



Examples

Example 1.2 (Euclidean distance)
M =R9,

d

1
Dy(x,y) = Ix = ylla= (D Ixi —yil?)2,

i=1

where x = (x1,...,xq4) and y = (y1,--.,Yd)-



Examples

Example 1.3 (Squared Euclidean distance)
M =R9,

d

Dg(x,y) = x = yll2 =) Ixi — yil.
i=1

where x = (x1,...,xq4) andy = (y1,--.,Yd)-



Examples

Example 1.4 (Minkowski distances, /,-norms)
M=R? p=>1,

d

1

Dy, (x,y) = lIx = yllp = (D Ixi — yil?) .
i=1

Example 1.5 (maximum distance)
M =R9,

Di.(x,y) =[x = ylloo = max. Ixi — yil-



Examples

Example 1.6 (Pearson correlation)
M =R9,

1 Y (i = X)yi — )
RN ST IEs y—

where x = %Zx,- andy = %Zy,-.

DPearson (X Y)

i



Examples

Example 1.7 (Mahalanobis divergence)
A € R9%9 positive definite, i.e. xT Ax >0 for x # 0, M = R¢,

Da(x,y) = (x — y)TA(x — y)

Example 1.8 (ltakura-Saito divergence)

M — Rio,

Xj

DIS(X7.y) - Zi - |n(

Yi Yi

Xy 1.



Examples

Example 1.9 (Kullback-Leibler divergence)
M=5S59={xecRy:Vi:x; >0, x =1},

DKLD X y ZXI |n X:/y/
where by definition 0 - In(0) = 0.

Example 1.10 (generalized KLD)
M — Rgo,

Drio(x,y) =Y xiIn(xi/yi) = (xi — yi),



Similarity functions

Definition 1.11

S:Mx M — R is called a similarity function, if for all x,y,z € M
> S(x,y) = S(y,x) (symmetry)
» 0 < S(x,y) <1 (positivity),

S is called a metric, if in addition,
» S(x,y) =1 x =y (reflexivity)

» S(x,y)S(y,z) < (S(x,y) + S(y,z))S(x,z) (triangle
inequality)



Examples

Example 1.12 (Cosine similarity)

M =R9,
XTy
Scs(x,y) =
) =TTl
- 1+ Ses(x,
SCS(Xay): CS( y)

2



Similarity for binary features
Let x,y € {0,1}9, then

np(x,y) = {1 <i<d:xi = b,y = b}|
and for w € RZO

Sul(x,y) = noo(x,y) + nii(x,y)

noo(x, y) + ni(x,y) + w(no1(x,y) + mo(x,y))

Popular: w =1,2, %

Example 1.13 (matching coefficient)

noo(x,y) + mi(x,y)
” )

w = 1y5mc(X7Y) =



Similarity for binary features

_ o n(x,y)
SW(va) T nll(Xay) + W(no]_(X,y) + nlO(X7y))

1

Popular: w =1,2, 5.

Example 1.14 (Jaccard coefficient)

I711(X,_)/)

=15 = '
w s Stacard(X, Y) mi(x,y) + no1(x, y) + no(x,y)
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