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Exercise 1:

(a) Let D : M ×M → R≥0 be a metric, P ⊂ M and C = {C1, . . . , Ck} a partition of P .
Then

1

2
· costdrad(C) ≤ costrad(C) ≤ costdrad(C)

(b) Now let M = Rd, and let D := Dl22
be the squared euclidean distance. Then

costdrad(C) ≤ costdiam(C) ≤ 4 · costdrad(C)

Exercise 2:

(a) We say a clustering C = (C1, . . . , Ck) is strongly separated if for all i = 1, . . . , k

max
x,y∈Ci

D(x, y) < min
i 6=j

min
x∈Ci, y∈Cj

D(x, y).

Given that the optimal clustering is stronly separated, prove that agglomerative clus-
tering with complete linkage cost computes an optimal diameter k-clustering in n − k
steps.

(b) Give a small example that shows that agglomerative clustering with complete linkage cost
might not compute an optimal diameter k-clustering in n− k steps if C is not strongly
separated.

Exercise 3:
Divisive clustering algorithms start with the complete data set as one cluster. In each step,
they split a cluster up into two clusters.
Consider the following divisive algorithm to find a partition of P into k clusters C1, . . . , Ck

such that costDdiam(C) is minimized.

Algorithm 1 GreedyDivisive(X, k):

1: Create one cluster containing the complete dataset
2: for r = n downto k do
3: Split the cluster with the maximum diameter into two clusters, such that the new

clusters have the smallest possible diameter

Show that the clustering obtained by this algorithm can be arbitrarily bad.
Hint : Consider some suitable set P ⊂ R with |P | = 4 and k = 3.



Exercise 4:
Define metric matrix diameter clustering to be the restriction of matrix diameter clustering to
symmetric matrices ∆ ∈ Rn×n

≥0 that define a metric. That is, for any triple (x, y, z) of indices
∆xy + ∆yz ≤ ∆xz. Show that unless P = NP metric matrix diameter clustering cannot be
approximated with factor 2− ε, ε > 0 arbitrary.
Hint: Use the length of a shortest path in a graph as a metric.


