Quantum Computation Seminar

Prof. Dr. Blömer & Prof. Dr. Gharibian

In addition to a solid grasp of linear algebra you should have basic knowledge in at least two of the following areas

- data structures and algorithms
- complexity theory
- quantum computation
- probability theory and stochastics

Overview

- All meetings are mandatory
- General kick-off meeting (today)
- Topic choice
 - Send us your top 3 topics sevag.gharibian@mail.upb.de
 - We distribute the topics
 - You can also swap your topic once with another willing person
- Introductory Talk
 - We will give a talk on the style of a scientific paper and how to work with literature.

Overview

• Topic kick-off Meeting

- Meeting with your supervisor.
- You should have read your assigned topic paper and understood main ideas
- We discuss your tasks and questions you have
- Q&A day
 - We answer all of your questions in a personal meeting
- Essay Draft
 - You hand in a "feature complete" draft of your essay
 - "feature complete", i.e. everything you plan to have in the final essay should be included in this version.
 - This is your chance to get comprehensive feedback on your work.

• Talk Slides

- We ask you to turn in the slides of your talk (presentation). We will give feedback for this.
- Talk
 - You will present your topic for all seminar participants and the supervisors
 - Your talk should last 1h including discussion (plan to talk 45-50 minutes).

• Essay Final Version

• The final version of the essay should incorporate the feedback given for the draft version and your talk.

Topics

Quantum supremacy

- 1. Complexity-Theoretic Foundations of Quantum Supremacy Experiments (Aaronson, Chen)
- 2. Average-case complexity versus approximate simulation of commuting quantum computations (Bremner, Montanaro, Shepherd)
- 3. The complexity of approximate counting (Stockmeyer)
- 4. Quantum advantage with shallow circuits (Bravyi, Gosset, König) (followup papers: Average-Case Quantum Advantage with Shallow Circuits (Le Gall), Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits (Watts, Kothari, Schaeffer, Tal). The latter works with a simpler problem than in the original Bravyi et al paper.)

Topics

Quantum Cryptography

- 5. Actively secure two-party evaluation of any quantum operation (Dupuis, Nielsen, Salvail)
- 6. Classical verification of quantum computations (Mahadev)

Quantum algorithms and complexity

7. A Quantum Lovasz Local Lemma (Ambainis, Kempe, Sattath) (followup: On preparing ground states of gapped Hamiltonians: An efficient Quantum Lovasz Local Lemma (Gilyen, Sattath))

- 8. Quantum approximate counting, simplified (Aaronson, Rall)
- 9. Quantum walk speedup of backtracking algorithms (Montanaro)
- 10. Quantum speedups for exponential-time dynamic programming algorithms (Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs)

Quantum communication complexity

- 11. Exponential separation for one-way quantum communication complexity, with applications to cryptography (Gavinsky, Kempe, Kerenidis, Raz, de Wolf)
- 12. Classical Interaction cannot replace a quantum message (Gavinsky)

Time table

	What
Until Monday 14th	send top 3 topics and preferred slot
Wednesday 16th	assignment of topics
Until Friday 18th	exchange topic with willing students and inform us
Individual meetings with supervisor	topic kick-off meeting
23.10.19, 16:15	introductory talk
07.11.19	Q&A day
10.12.19	first slot for talk
23.01.20	second slot for talk
21.02.20	essay draft
16.03.20	deadline: essay final version

Questions...

