I. Perfect secrecy

Definition 0 A private or symmetric encryption scheme consists of three algorithms Gen, Enc, Dec.

- 1. The key generation algorithm outputs a key k, according to some distribution on the key space K.
- 2. The encryption algorithm Enc, on input a key k and a plaintext message m from message space P, outputs a ciphertext c, $Enc_k(m)=:c.$
- 3. The decryption algorithm Dec, on input a key k and a ciphertext c from a cipher space C, outputs a plaintext message m, $Dec_k(c)=:m$.

 $\forall k \in K, m \in P : Dec_k(Enc_k(m)) = m$

Basic concepts

Pr[P=m] denotes probability distribution on P.

Pr[K=k] denotes probability distribution on K (given by Gen). distributions are independent

induced distribution on C:

$$\begin{aligned} \text{Pr}\big[\textbf{C} = \textbf{c}\big] &= \sum_{\{(m,k): \text{Enc}_k(m) = \textbf{c}\}} \text{Pr}\big[\textbf{P} = m \land \textbf{K} = k\big] \\ &= \sum_{\{(m,k): \text{Enc}_k(m) = \textbf{c}\}} \text{Pr}\big[\textbf{P} = m\big] \cdot \text{Pr}\big[\textbf{K} = k\big] \end{aligned}$$

$$Pr[P=m|C=c] = Pr[P=m \land C=c]/Pr[C=c]$$

$$= \sum_{\{k:Enc_k(m)=c\}} Pr[P=m] \cdot Pr[K=k]/Pr[C=c]$$
₂

Definition

Definition 1.1 An encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space P, key space K, and cipher space C is perfectly secret if for every distribution over P, every $m \in P$, and every $c \in C$ with Pr[C = c] > 0:

$$Pr[P=m|C=c]=Pr[P=m].$$

Equivalent definition

Definition 1.2 Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme with message space P, key space K, and cipher space C. For $m \in P$ and $c \in C$ we set

$$Pr[Enc_{K}(m) = c] := \sum_{\{k \in K | Enc_{k}(m) = c\}} Pr[K = k].$$

Lemma 1.3 Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme with message space P, key space K, and cipher space C. Let $Pr[P = \cdot]$ be a distribution on P. For every $c \in C$ and every $m \in P$ with Pr[P = m] > 0:

$$Pr[Enc_{\kappa}(m) = c] = Pr[C = c|P = m].$$

Equivalent definition

Lemma 1.4 An encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space P, key space K, and cipher space C is perfectly secret if and only if for every $m_0, m_1 \in P$, and every $c \in C$:

$$Pr[Enc_{\kappa}(m_0) = c] = Pr[Enc_{\kappa}(m_1) = c].$$

Remark The equivalent formulation for perfect secrecy uses no distributions on P.

One-time-pad

$$I \in \mathbb{N}, P = C = K = \{0,1\}^{I}$$

- Gen: chooses $k \in \{0,1\}^{I}$ uniformly
- Enc: $\operatorname{Enc}_{k}(m) := m \oplus k$
- Dec: $Dec_k(c) := c \oplus k$

Theorem 1.5 The one-time-pad is perfectly secret.

Shannon's theorem

Theorem 1.6 Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme with |P| = |C| = |K|. Scheme Π is perfectly secret if and only if

- 1. Gen chooses every k ∈ K with probability 1/K.
- 2. For every $m \in P, c \in C$ there exists a unique key $k \in K$ with $Enc_k(m) = c$.

The indistinguishability game

Eavesdropping indistinguishability game $PrivK_{A,\Pi}^{eav}$

- 1. A key k is chosen with Gen.
- 2. A chooses 2 plaintexts $m_0, m_1 \in P$.
- 3. $b \leftarrow \{0,1\}$ chosen uniformly. $c := Enc_k(m_b)$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{eav} = 1$, if output is 1. Say A has succeded or A has won.

Theorem 1.7 $\Pi = (Gen, Enc, Dec)$ is perfectly secret if and only if for every adversary A $Pr[PrivK_{A,\Pi}^{eav} = 1] = 1/2$.