VI. Theoretical constructions of pseudorandom objects

Goal pseudorandom generators and pseudorandom functions from general assumptions.

Assumption one-way functions/permutations exist.

one-way fcts/perm → hardcore predicates

- → PRG with expansion n+1
- → PRG with polynomial expansion factor
- → PRF

Inverting game

 $f: \{0,1\}^* \to \{0,1\}^*$, A a probabilistic polynomial time algorithm

Inverting game Invert
$$_{A,f}(n)$$

- 1. $x \leftarrow \{0,1\}^n, y := f(x)$.
- 2. A given input 1^n and y, outputs x'.
- 3. Output of game is 1, if f(x') = y, otherwise output is 0.

Write Invert_{A,f} (n) = 1, if output is 1. Say A has succeded or A has won.

Definition of one-way function

Definition 6.1
$$f: \{0,1\}^* \rightarrow \{0,1\}^*$$
 called one-way, if

- 1. there is a ppt M_f with $M_f(x) = f(x)$ for all $x \in \{0,1\}^*$
- 2. for every probabilistic polynomial time algorithm A there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that $\Pr\Big[\text{Invert}_{A,f}\left(n\right) = 1\Big] \leq \mu(n).$

Notation
$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(f(x)) \in f^{-1}(f(x)) \right] \le \mu(n)$$

Definition of one-way permutation

$$f: \{0,1\}^* \rightarrow \{0,1\}^*$$
 length preserving, if for all $x | f(x) | = |x|$.

$$f_n := f_{[0,1]^n}$$
, restriction of f to $\{0,1\}^n$.

Definition 6.2 A one-way function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is called one-way permutation, if

- 1. f is length-preserving,
- 2. for every $n \in \mathbb{N}$ the function f_n is a bijection.

Function families

Definition 6.3 A triple $\Pi = (Gen, Samp, f)$ of ppts is called a family of functions, if

- 1. Gen(1ⁿ) outputs parameters I with $|I| \ge n$, where each I defines finite sets D_i and R_i for a function $f_i : D_i \to R_i$ defined below.
- 2. Samp(I) outputs $x \leftarrow D_{I}$.
- 3. f is deterministic and on input I, $x \in D_1$ outputs $y \in R_1$, $y := f_1(x)$.

 Π is a family of permutations, if in addition for all I D₁ = R₁ and f₁ is a bijection

The inverting games

Inverting game Invert_{A, Π} (n)

- 1. $I \leftarrow Gen(1^n), x \leftarrow Samp(I), y := f_I(x).$
- 2. A given input 1ⁿ,I and y, outputs x'.
- 3. Output of game is 1, if $f_i(x') = y$, otherwise output is 0.

Definition 6.4 A family of functions $\Pi = (\text{gen}, \text{Samp}, f)$ is called one-way, if for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\text{Pr} \big\lceil \text{Invert}_{\Delta \Pi} (n) = 1 \big\rceil \leq \mu(n)$.

Candidates

1.
$$f_{\text{mult}}$$
: $\{0,1\}^* \rightarrow \{0,1\}^*$

$$x \mapsto (x_1 \cdot x_2, |x_1|, |x_2|),$$

where $|\mathbf{x}_1| = \lfloor |\mathbf{x}|/2 \rfloor$, $|\mathbf{x}_2| = \lceil |\mathbf{x}|/2 \rceil$, and identify bit strings and integers via binary representations.

Idea Multiplication easy, factoring hard

Candidates

2. Gen(1ⁿ) generates n n-bit integers uniformly at random,

$$I = (a_1, \ldots, a_n)$$

Samp(I)
$$\mathbf{x} \leftarrow \{0,1\}^n, \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$

$$f_i(x)$$
 outputs $\sum_{i=1}^n x_i a_i$

Idea Addition is easy, SubsetSum is difficult.

Candidates

3. Gen(1ⁿ) generates prime number $p \ge 2^n$ and generator g for the multiplicative group \mathbb{Z}_p^* , I = (p,g), $D_I = \mathbb{Z}_{p-1}$, $R_I = \mathbb{Z}_p^*$ Samp(I) $x \leftarrow \mathbb{Z}_{p-1}$ outputs $g^x \mod p$

Idea Exponentiation is easy, discrete logarithm is difficult.

Hardcore predicates

- Definition 6.5 hc: $\{0,1\}^* \to \{0,1\}$ is a hardcore predicate for a function $f: \{0,1\}^* \to \{0,1\}^*$, if
 - 1. hc can be computed in polynomial time,
 - 2. for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that

$$Pr_{x \leftarrow \{0,1\}^n} \left[A(f(x)) = hc(x) \right] \leq 1/2 + \mu(n).$$

The Goldreich-Levin predicate

$$\begin{split} f: &\left\{0,1\right\}^* \to \left\{0,1\right\}^* \text{ one-way, then} \\ g: &\left\{0,1\right\}^* \to \left\{0,1\right\}^* \\ w \mapsto & f(x) \| r, \text{ where } w = x \| r, |x| = |r|, \end{split}$$

is also one-way.

Formally, g is only definied for arguments of even length, by padding w we can define it for all bit strings.

Theorem 6.6 Let f be a one-way function and g be defined as above. Then

gl:
$$\{0,1\}^* \rightarrow \{0,1\}$$

 $(x,r) \mapsto x \odot r = \sum x_i r_i \mod 2$

is a hardcore predicate for g.

The Goldreich-Levin predicate

Theorem 6.6 (reformulated) Let f be a one-way function. Let g and the predicate gl be defined as above. If there exists a ppt A and a polynomial $p(\cdot)$ such that

$$\Pr_{x,r \leftarrow \{0,1\}^n} \left[A(f(x),r) = gl(x,r) \right] \ge \frac{1}{2} + \frac{1}{p(n)}$$

for infinitely many values of n, then there exists a ppt A and a polynomial q(·) such that

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathsf{Invert}_{\mathsf{A}',\mathsf{f}}(\mathbf{n}) = 1 \right] \ge \frac{1}{\mathsf{q}(\mathbf{n})}$$

for infinitely many values of n.

An extremely simplified variant

Theorem 6.7 Let f be a one-way function and let gl be the Goldreich-Levin predicate. If there exists a ppt A such that

$$Pr_{x,r \leftarrow \{0,1\}^n} \left(A(f(x),r) = gI(x,r) \right) = 1$$

for infinitely many values of n, then there exists a ppt A' such that

$$Pr(Invert_{A',f}(n)=1)=1$$

for infinitely many values of n.

A simplified variant

Theorem 6.8 Let f be a one-way function and let gl be the Goldreich-Levin predicate. If there exists a ppt A and a polynomial p such that

$$Pr_{x,r\leftarrow\{0,1\}^n}\left(A(f(x),r)=gI(x,r)\right)\geq \frac{3}{4}+\frac{1}{p(n)}$$

for infinitely many values of n, then there exists a ppt A' such that

$$Pr(Invert_{A',f}(n)=1) \ge \frac{1}{4p(n)}$$

for infinitely many values of n.

One-way functions and hard-core predicates

Claim 6.9 Let f,gl, A, p be as before. Then there exists a

set
$$S_n \subseteq \{0,1\}^n$$
 of size at least $\frac{2^n}{2p(n)}$ such that for every

$$x \in S_n$$

$$Pr_{r \leftarrow \{0,1\}^n} \left(A(f(x),r) = gl(x,r) \right) \ge \frac{3}{4} + \frac{1}{2p(n)}.$$

One-way functions and hard-core predicates

Claim 6.10 Let f,gl, A, p be as before. Then there exists a

set
$$S_n \subseteq \{0,1\}^n$$
 of size at least $\frac{2^n}{2p(n)}$ such that for every

 $x \in S_n$ and every $i \in \{1,...,n\}$

$$Pr_{r \leftarrow \{0,1\}^n} \left(A(f(x),r) = gI(x,r) \land A(f(x),r \oplus e^i) = gI(x,r \oplus e^i) \right)$$

$$\geq \frac{1}{2} + \frac{1}{p(n)}.$$

Chebyshev's inequality

Theorem 6.11 (Chebyshev) Let X be a random variable and $\delta > 0$. Then

$$\Pr[|X - E[X]| \ge \delta] \le \frac{Var[X]}{\delta^2}.$$

Corollary 6.12 Let $X_1, ..., X_m$ be pairwise independent random variables with the same expectation μ and the same variance σ^2 . Then, for every $\epsilon > 0$,

$$\Pr\left|\frac{\sum_{i=1}^{m}X_{i}}{m}-\mu\right| \geq \epsilon \leq \frac{\sigma^{2}}{\epsilon^{2}m}.$$

From prediction to inversion

- 1. For i=1 to n do
- 2. For j=2 to $np(n)^2/2$ do
- 3. $r \leftarrow \{0,1\}^n$
- 4. $\overline{x}_{i,j} \leftarrow A(f(x),r) \oplus A(f(x),r \oplus e^i)$
- 5. $\mathbf{x}_{i} := \text{majority}\left(\overline{\mathbf{x}}_{i,1}, \dots, \overline{\mathbf{x}}_{i,np(n)^{2}/2}\right)$
- 6. Output $x:=x_1...x_n$

Hardcore predicates and PRGs

Theorem 6.13 Let f be a one-way permutation and hc a hardcore predicate for f. Then

G:
$$\{0,1\}^* \rightarrow \{0,1\}^*$$

s $\mapsto f(s) \| hc(s)$

is a PRG with expansion factor n + 1.

Pseudorandom generators

Definition 2.5 (restated) Let $I: \mathbb{N} \to \mathbb{N}$ be a polynomial with I(n) > n for all $n \in \mathbb{N}$. A deterministic polynomial time algorithm G is a pseudorandom generator if

- 1. $\forall s \in \{0,1\}^* |G(s)| = I(|s|),$
- 2. For every ppt D there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that $\forall n \in \mathbb{N} \left| Pr \Big[D \big(r \big) = 1 \Big] Pr \Big[D \big(G \big(s \big) \big) = 1 \Big] \leq \mu \big(n \big)$, where $r \leftarrow \left\{ 0,1 \right\}^{l(n)}$ and $s \leftarrow \left\{ 0,1 \right\}^n$.

I is called the expansion factor of G.

From distinguishers to predictors

A on input f(s)

- 1. $r' \leftarrow \{0,1\}$
- 2. Invoke D with input f(s) || r'
- 3. If D returns 1, then output r', otherwise output complement of r'.

PRGs with arbitrary expansion

Theorem 6.14 If there is a PRG \overline{G} with expansion factor n+1, then there is a PRG G with expansion factor p(n) for every polynomial $p:\mathbb{N}\to\mathbb{N}$ with $p(n)\geq n$ for all $n\in\mathbb{N}$.

The construction

\overline{G} PRG with expansion n + 1

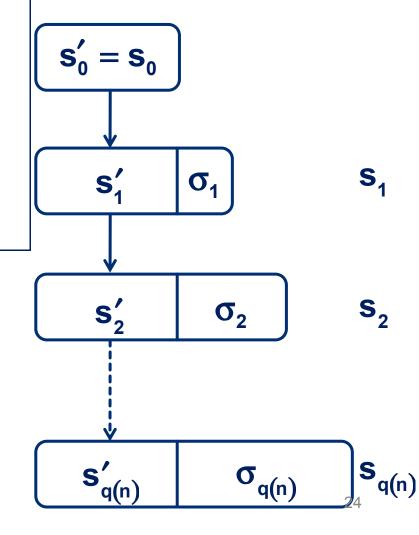
G on input $s \in \{0,1\}^n$

- 1. q(n) := p(n) n.
- 2. Set $s_0 := s, \sigma_0 := \varepsilon$ (empty string)
- 3. For i = 1,...,q(n) do:
 - a) Define s'_{i-1} to be the first n bits of s_{i-1} and σ_{i-1} to be the last i-1 bits of s_{i-1} .
 - b) Set $s_i := \overline{G}(s'_{i-1}) || \sigma_{i-1}$.
- 4. Output s_{q(n).}

The construction

G on input $s \in \{0,1\}^n$

- 1. q(n) := p(n) n.
- 2. Set $s_0 := s, \sigma_0 := \epsilon$ (empty string)
- 3. For i = 1,...,q(n) do:
 - a) Define s'_{i-1} to be the first n bits of s_{i-1} and σ_{i-1} to be the last i-1 bits of s_{i-1} .
 - b) Set $s_i := \overline{G}(s'_{i-1}) \parallel \sigma_{i-1}$.
- 4. Output s_{q(n).}



The construction —a special case

- $f: \{0,1\}^* \rightarrow \{0,1\}^*$ a one-way function
- $hc: \{0,1\}^* \rightarrow \{0,1\}$ a hardcore predicate for f.
- $\overline{G}(s) = f(s) \| hc(s)$

G with expansion factor p(n):

$$G\!\left(s\right)\!=f^{\left(p\left(n\right)-n\right)}\!\left(s\right)\|\,hc\!\left(f^{\left(p\left(n\right)-n-1\right)}\!\left(s\right)\right)\|\cdots\|\,hc\!\left(f^{\left(1\right)}\!\left(s\right)\right)\|\,hc\!\left(f^{\left(0\right)}\!\left(s\right)\right)$$

Claim 6.15 If there is a PRG \overline{G} with expansion factor n+1, then there is a PRG G with expansion factor n+2.

 \overline{G} PRG with expansion n + 1, G corresponding PRG with expansion factor n + 2

3 distributions on $\{0,1\}^{n+2}$:

$$\begin{split} &H_{n}^{0}: \quad \boldsymbol{s}_{0} \leftarrow \left\{0,1\right\}^{n}, \boldsymbol{s} = \boldsymbol{G}\left(\boldsymbol{s}_{0}\right) \\ &H_{n}^{1}: \quad \boldsymbol{s}_{1}' \leftarrow \left\{0,1\right\}^{n}, \boldsymbol{\sigma}_{1} \leftarrow \left\{0,1\right\}, \boldsymbol{s} = \bar{\boldsymbol{G}}\left(\boldsymbol{s}_{1}'\right) \parallel \boldsymbol{\sigma}_{1} \\ &H_{n}^{2}: \quad \boldsymbol{s} \leftarrow \left\{0,1\right\}^{n+2} \end{split}$$

Claim 6.15 If there is a PRG \bar{G} with expansion factor n+1, then there is a PRG G with expansion factor n+2.

For every ppt D there is a negligible function $\mu(n)$ such that

$$\left| \operatorname{Pr}_{s_{2} \leftarrow \operatorname{H}_{n}^{0}} \left[\operatorname{D} \left(s_{2} \right) = 1 \right] - \operatorname{Pr}_{s_{2} \leftarrow \operatorname{H}_{n}^{1}} \left[\operatorname{D} \left(s_{2} \right) = 1 \right] \leq \mu \left(n \right). \right|$$

For every ppt D there is a negligible function $\mu(n)$ such that

$$\left| \operatorname{Pr}_{s_{2} \leftarrow \operatorname{H}_{n}^{1}} \left[\operatorname{D} \left(s_{2} \right) = 1 \right] - \operatorname{Pr}_{s_{2} \leftarrow \operatorname{H}_{n}^{2}} \left[\operatorname{D} \left(s_{2} \right) = 1 \right] \leq \mu \left(n \right). \right|$$

D distinguisher against G, construct distinguisher D' against G as follows:

D' on input $w \in \{0,1\}^{n+1}$

- 1. $j \leftarrow \{1,2\}$
- 2. $\sigma_{i-1} \leftarrow \{0,1\}^{j-1}$
- 3. $s_j := w \parallel \sigma_{j-1}$. Run G, with input s_j and starting with iteration i = j + 1, and output $D(s_{q(n)})$.

D' on input $w \in \{0,1\}^{n+1}$

- 1. $j \leftarrow \{1,2\}$
- 2. $\sigma_i \leftarrow \{0,1\}^{j-1}$
- 3. $s_j := w \parallel \sigma_j$. Run G, with input s_j and starting with iteration i = j + 1, and output $D(s_{q(n)})$.

Crucial equality

Hybrid distributions for the general case

 \overline{G} PRG with expansion n + 1, G corresponding PRG with expansion factor p(n), set q(n) = p(n) - n.

Hybrid distribution H_n^j , $0 \le j \le q(n)$

- 1. $\mathbf{s}_{j} \leftarrow \left\{0,1\right\}^{n+j}$
- 2. Run G, starting with iteration j + 1 and with s_i as input.
- 3. Output $s_{q(n)}$.

PRFs from PRGs

Theorem 6.16 If there is a PRG G, then pseudorandom functions exist.

Truly random functions

Func_n :=
$$\{f : \{0,1\}^n \to \{0,1\}^n\}$$

$$|\mathsf{Func}_{\mathsf{n}}| = 2^{\mathsf{n}2^{\mathsf{n}}}$$

random function: $f \leftarrow Func_n$

Pseudorandom function (PRF)

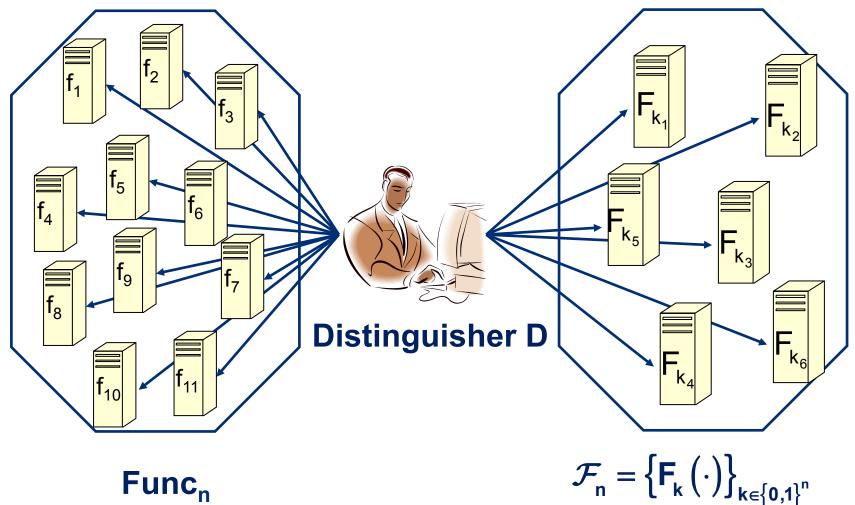
Definition 3.4 (restated) Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a keyed, efficient and length-preserving function. F is called a pseudorandom function, if for all ppt distinguishers D there is a negligible function μ such that for all $n \in \mathbb{N}$

$$\left| \mathbf{Pr} \left[\mathbf{D}^{F_k(\cdot)} \left(\mathbf{1}^n \right) = \mathbf{1} \right] - \mathbf{Pr} \left[\mathbf{D}^{f(\cdot)} \left(\mathbf{1}^n \right) = \mathbf{1} \right] \leq \mu(n),$$

where $k \leftarrow \{0,1\}^n$, $f \leftarrow Func_n$.

$$\mathsf{Func}_{\mathsf{n}} := \left\{ \mathsf{f} : \left\{ \mathsf{0}, \mathsf{1} \right\}^{\mathsf{n}} \to \left\{ \mathsf{0}, \mathsf{1} \right\}^{\mathsf{n}} \right\}$$

Pseudorandom functions



with uniform distribution

$$\mathcal{F}_{n} = \left\{ F_{k} \left(\cdot \right) \right\}_{k \in \left\{0,1\right\}^{n}}$$

with distribution $k \leftarrow \{0,1\}^n$

From PRF to cpa-security

Construction 3.6 (restated) Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a keyed, efficient, and length-preserving function. Define $\Pi_F = (\mathsf{Gen}_F, \mathsf{Enc}_F, \mathsf{Dec}_F)$ as follows:

Gen_F: on input $1^n : k \leftarrow \{0,1\}^n$.

Enc_F: on input k,m $\in \{0,1\}^n$, choose $r \leftarrow \{0,1\}^n$ and output $c := (r,m \oplus F_k(r))$.

Dec_F: on input $c = (r,s) \in \{0,1\}^n \times \{0,1\}^n$ and $k \in \{0,1\}^n$ output $m := s \oplus F_k(r)$.

PRFs from PRGs

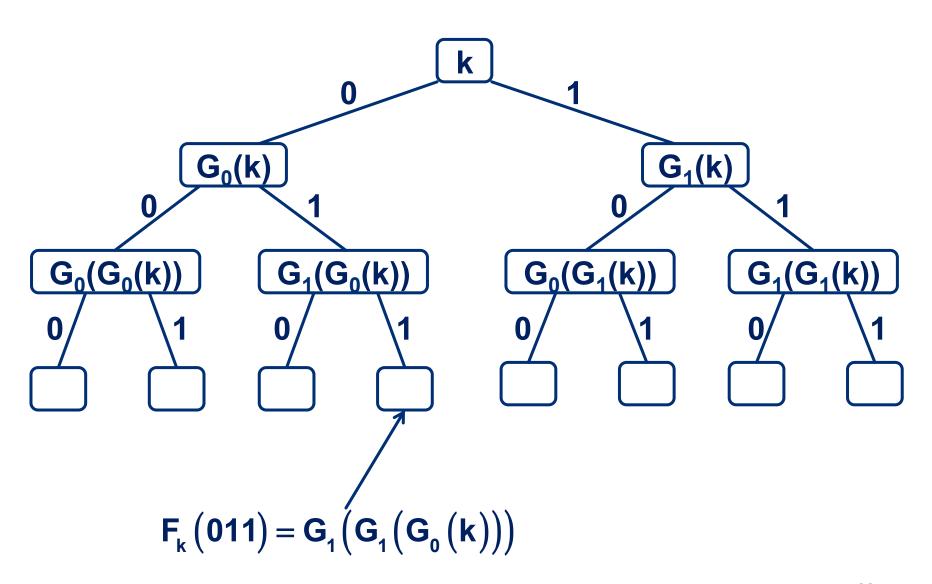
Theorem 6.16 If there is a PRG G, then pseudorandom functions exist.

Construction 6.17 Let G be a PRG G with expansion factor p(n) = 2n. By $G_0(k)$, $G_1(k)$ denote the first and second half of G's output. For every k define the function F_k as follows.

$$F_{k}: \{0,1\}^{n} \rightarrow \{0,1\}^{n}$$

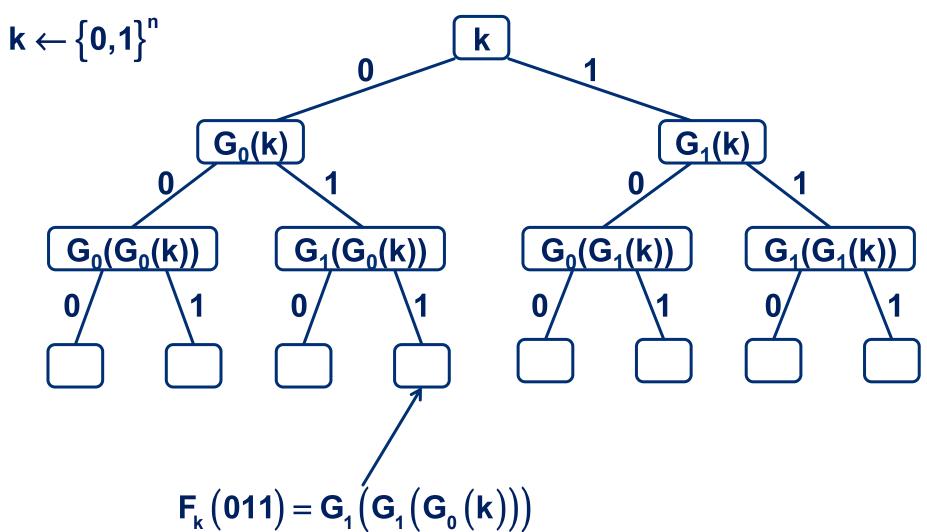
$$x = x_{1}...x_{n} \mapsto G_{x_{n}}\left(\cdots\left(G_{x_{2}}\left(G_{x_{1}}\left(k\right)\right)\right)\cdots\right)$$

PRFs from PRGs



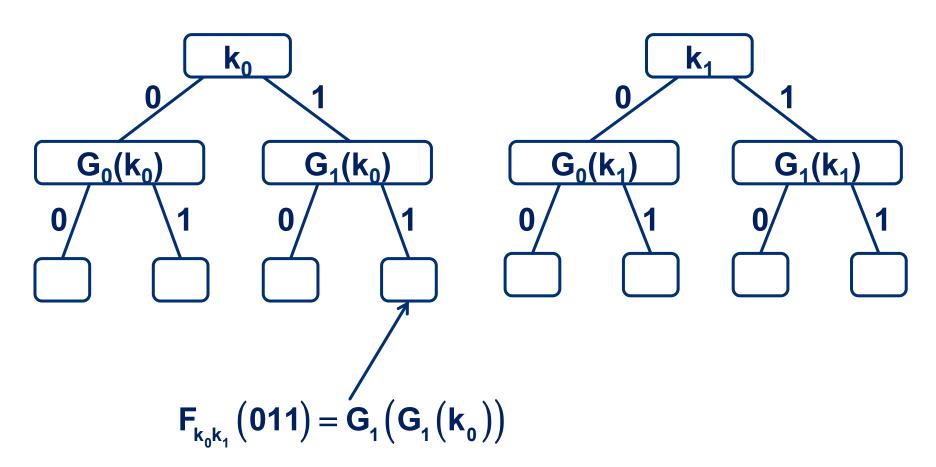
 H_n^i distribution on a family of functions $\mathcal{F}_n^i := \left\{f_s\right\}_{s \in \left\{0,1\right\}^{n2^i}}$ distribution given by $s \leftarrow \left\{0,1\right\}^{n2^i}$

Hybrid H_n⁰



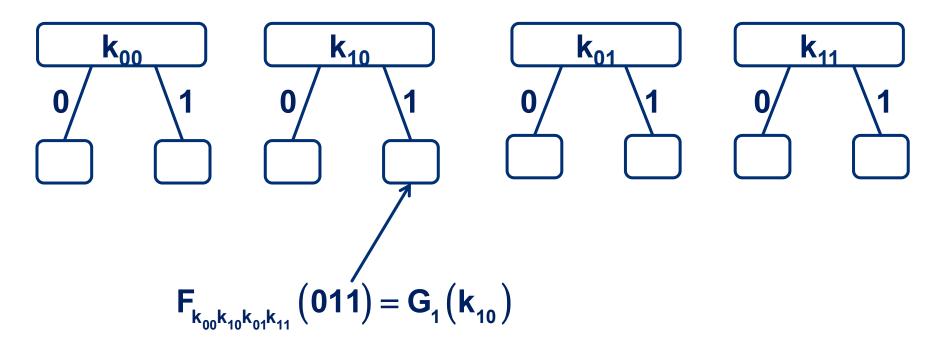
Hybrid H_n¹

$$\mathbf{k}_{0} \leftarrow \left\{\mathbf{0},\mathbf{1}\right\}^{n}, \mathbf{k}_{1} \leftarrow \left\{\mathbf{0},\mathbf{1}\right\}^{n}$$



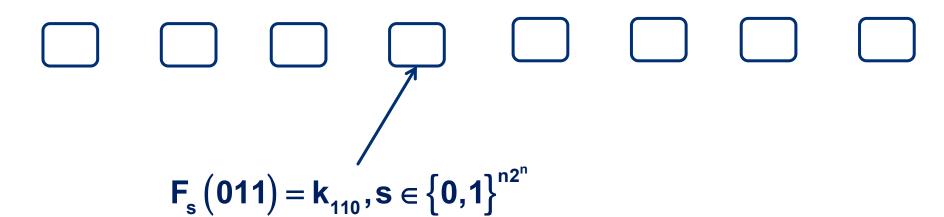
Hybrid H_n²

$$k_{00} \leftarrow \{0,1\}^{n}, k_{10} \leftarrow \{0,1\}^{n}, k_{01} \leftarrow \{0,1\}^{n}, k_{11} \leftarrow \{0,1\}^{n}$$



Hybrid H_n

$$k_b \leftarrow \{0,1\}^n, b \in \{0,1\}^n$$



$$H_n^i$$
 distribution on a family of functions $\mathcal{F}_n^i := \left\{f_s\right\}_{s \in \left\{0,1\right\}^{n2^i}}$ distribution given by $s \leftarrow \left\{0,1\right\}^{n2^i}$

- H_n⁰ pseudorandom function
- H_nⁿ random function
- H_n and H_nⁱ⁺¹ differ in one application of G
- Distinguisher for H_n^0 and H_n^n leads to distinguisher for H_n^i and H_n^{i+1} for some i.
- Distinguisher for H_nⁱ and H_nⁱ⁺¹ leads to distinguisher for G and uniform distribution.

Neccessary conditions

Theorem 6.18 If pseudorandom generators exist, then one-way functions exist.

Theorem 6.19 If encryption schemes with indistinguishable encryptions against eavesdropping adversaries exist, then one-way functions exist.