VI. Theoretical constructions of pseudorandom
objects

Goal pseudorandom generators and pseudorandom
functions from general assumptions.

Assumption one-way functions/permutations exist.

one-way fcts/perm = hardcore predicates
= PRG with expansion n+1

= PRG with polynomial expansion factor

= PRF



Inverting game
f: {0,1}* — {0,1}*, A a probabilistic polynomial time algorithm
Inverting game Invert, , (n)
1. x«{0,1}",y:=f(x).

2. A giveninput 1" and y, outputs x’.
3. Output of game is 1, if f(x’) = y, otherwise output is 0.

Write Invert, , (n) =1, if output is 1. Say A has succeded or A

has won.



Definition of one-way function
Definition 6.1 f:{0,1}" — {0,1}" called one-way, if

1. there is a ppt M, with M, (x) = f(x) for all x € {0,1}’
2. for every probabilistic polynomial time algorithm A there
is a negligible function u: N — R" such that

Pr|Invert, (n)=1]<p(n).

Notation Pr [A(f(x))ef"(f(x))]|<p(n)

x<—{0,1}n



Definition of one-way permutation

f:{0,1}* - {0,1}* length preserving, if for all x |f(x)| =X

f =1

"o

, restriction of f to {0,1}".

Definition 6.2 A one-way function f: {0,1}* N {0,1}* is called
one-way permutation, if

1. f is length-preserving,
2. for every ne N the function f_is a bijection.



Function families

Definition 6.3 A triple I1 = (Gen,Samp,f)of ppts is called a
family of functions, if

1. Gen(1") outputs parameters | with | > n, where each |

defines finite sets D, and R for a functionf :D, - R
defined below.

2. Samp(l) outputs x <D,
3. fis deterministic and on inputl, x eD, outputsy eR,

y: = f (x).

IT is a family of permutations, if in addition for all I D, =R,

and f is a bijection



The inverting games

Inverting game Invert,  (n)

1. l« Gen(1"),x « Samp(l),y := f (x).

2. A giveninput 1",l and y, outputs x’.
3. Output of game is 1, if f (x") = y, otherwise output is 0.

Definition 6.4 A family of functions IT = (gen,Samp,f) is called

one-way, if for every probabilistic polynomial time algorithm

A there is a negligible function u: N — R" such that

Pr|Invert,  (n)=1]<p(n).



Candidates
1. £ .: {0,117 — {o,4}

X > (x1.x2,

X,

),

x, =[|x/2|, and identify bit strings and

X,

J

where x, =[x /2]

integers via binary representations.

Idea Multiplication easy, factoring hard



Candidates

2. Gen(1“) generates n n-bit integers uniformly at random,

1=(a,,...,a)

Samp(l) x «{0,1}" ,x =(x,,...,x_)

f(x) outputs zn:xiai
i=1

Idea Addition is easy, SubsetSum is difficult.



Candidates

3. Gen(1") generates prime number p > 2" and generator g
for the multiplicative group Z’,1=(p,g),D, =Z__

R =Z

o]

1,

Samp(l) x « Z

p—1

f(x) outputs g* mod p

Idea Exponentiation is easy, discrete logarithm is difficulit.



Hardcore predicates

Definition 6.5 he:{0,1} — {0,1} is a hardcore predicate for a
function f:{0,1}" — {0,1}, if

1. hc can be computed in polynomial time,
2. for every probabilistic polynomial time algorithm A there

is a negligible function u: N — R" such that
Pr_ oy [A(f(x)) =he(x)]<1/2+p(n).
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The Goldreich-Levin predicate
f:{0,1} —{0,11" one-way, then
g: {01} — {04}
w — f(x)|lr, where w =x||r,|x|=|r],
is also one-way.
Formally, g is only definied for arguments of even length, by

padding w we can define it for all bit strings.

Theorem 6.6 Let f be a one-way function and g be defined as
above. Then

gl: {0, — {o,1}
(x,r) > xOr=) xr,mod2

is a hardcore predicate for g. 11



The Goldreich-Levin predicate

Theorem 6.6 (reformulated) Let f be a one-way function. Let g
and the predicate gl be defined as above. If there exists a
ppt A and a polynomial p(:) such that

1 1
f{'ﬁ,m [ A(f(x),r) = gl(x,r) | ot o)

for infinitely many values of n, then there exists a ppt A" and

a polynomial g(-) such that

1
Pr |Invert,, . (nN)=1|>—
x«{on}“[ e =1] q(n)

for infinitely many values of n.
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An extremely simplified variant

Theorem 6.7 Let f be a one-way function and let gl be the
Goldreich-Levin predicate. If there exists a ppt A such
that

Pr_ o (A(f(x),r) = gl(x,r)) =1

for infinitely many values of n, then there exists a ppt A’

such that
Pr(lnvertA.,f (n)= 1) =1
for infinitely many values of n.
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A simplified variant

Theorem 6.8 Let f be a one-way function and let gl be the
Goldreich-Levin predicate. If there exists a ppt A and a poly-

nomial p such that

PY oy (A(f(x).r) = gl(xr)) Z " p(n)

for infinitely many values of n, then there exists a ppt A’
such that

Pr (InvertA.,f (n)= 1) >

for infinitely many values of n.



One-way functions and hard-core predicates

Claim 6.9 Let f,gl, A, p be as before. Then there exists a

n

2p(n)

setS_c{0,1}" of size at least such that for every

Xxe$S
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One-way functions and hard-core predicates

Claim 6.10 Let f,gl, A, p be as before. Then there exists a

n

2p(n)

setS_c{0,1}" of size at least such that for every

xeS_andeveryic{1,...,n}
Pr o (A(f(x),r) =gl(x,r) A A(f(x),r €I—)e‘) = gl(x,r G—)e‘))

S
2

p(n)
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Chebyshev’s inequality

Theorem 6.11 (Chebyshev) Let X be a random variable
and 0 > 0. Then

Pr[[X - E[X] > 6] < Y2rX]

Corollary 6.12 Let X,,...,X be pairwise independent random
variables with the same expectation 1 and the same

variance 6. Then, for every € > 0,

S -
i—1Xi o’
Pr = ——U <.
m em

\VJ
N
N
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From prediction to inversion

1. For i=1 ton do

2. For j=2 to np /2 do

3. r « {0,1}"

4. X, < A(f(x),r)@A(f(x),r@e’)
5. X. := majority (xm,...,xi,np(n)2 /2)

6. Output x:=x_...x_



Hardcore predicates and PRGs

Theorem 6.13 Let f be a one-way permutation and hc a

hardcore predicate for f. Then

G: {01} — {04}
S — f(s)llhc(s)

is a PRG with expansion factor n+1.
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Pseudorandom generators
Definition 2.5 (restated) Let |: N — N be a polynomial with

I(n) > n for all n e N. A deterministic polynomial time algorithm

G is a pseudorandom generator if

6(s) =1(s)
2. For every ppt D there is a negligible function p: N —» R"”
such that Vne N Pr[D(r) =1]-Pr[D(G(s)) = 1:” <u(n),

where r « {0,1}'(") and s < {0,1}".

1. Vse{0,1}

| is called the expansion factor of G.
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From distinguishers to predictors
A on input f(s)

1. r'«{0,1}
2. Invoke D with input f(s)||r’

3. If D returns 1, then output r’, otherwise output
complement of r’.

21



PRGs with arbitrary expansion

Theorem 6.14 If there is a PRG G with expansion factor n+1,

then there is a PRG G with expansion factor p(n) for every

polynomial p:N — N with p(n) >n for all ne N.
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The construction

G PRG with expansion n +1

G oninputs € {0,1}"
1. q(n):=p(n)-n.
2. Sets :=s,0,:=¢ (empty string)

Fori=1,...,q(n)do:

a) Define s’ to be the first n bits of s__
and o, , to be the lasti-1 bits of s__.
b) Sets :=G(s.,)llo,._,.

4. Output Sy(n)
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The construction

G on input s €{0,1}"

a(n):=p(n)-n.
2. Sets,:=s,0,:=¢ (empty string)
Fori=1,...,q(n)do:

a) Define si’_1 to be the first n bits of s__

and o, to be the lasti—-1 bits of s_
b) Sets,:=G(s/,)llo,,
4. Output Sy(n).

1-




The construction —a special case

— f: {0,1}* N {0,1}* a one-way function
— he: {0,1}* —{0,1} a hardcore predicate for f.
- G(s)=f(s)llhc(s)

G with expansion factor p(n):

G(s) =" (s) [ he(#77) (s)) 1+ 1 he (£7(s)) IThe (£ (s))
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The case p(n)=n+2

Claim 6.15 If there is a PRG G with expansion factor n+1,

then there is a PRG G with expansion factor n + 2.
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Hybrid distributions

G PRG with expansion n+1, G corresponding PRG with

expansion factor n+2

3 distributions on {0,1}"":

H: s, « {01} ,s=G(s,)
H : s!«{01}",0, «{0,1},s=G(s!)|lo,
H:: s {01}

n
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The case p(n)=n+2

Claim 6.15 If there is a PRG G with expansion factor n+1,

then there is a PRG G with expansion factor n + 2.

For every ppt D there is a negligible function p (n) such that

Pr, o[D(s,)=1]-Pr, _,[D(s,)=1]<n(n)

For every ppt D there is a negligible function p (n) such that
Pr. [D(s,)=1]- Pr. [D(s,)= 1]| <p(n).
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The case p(n)=n+2

D distinguisher against G, construct distinguisher D" against

G as follows:

n+1

D’ on input w {0,1}
1. j«<{1,2}
-1
2. o, 10,1}
3. si=w]o,_,. Run G, with input S, and starting with

iteration i = j+1, and output D(sq(n)).

29



The case p(n)=n+2
D’ on input w € {0,1}n+1
1. j«{1,2}
2. o, «{0,1}"
3. s:=w]lo,. Run G, with input S, and starting with

iteration i = j+1, and output D(sq(n)).

Crucial equality

Pr o (D' (W)=1]-Pr_ . [D"(6(s))
o P, e [D(s,)=1]-Pr, _.[D(s,)= 1])

e

;Pr[D( )=1]-Pr[D(G(s))=1]
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Hybrid distributions for the general case

G PRG with expansion n+1, G corresponding PRG with

expansion factor p(n), set q(n) =p(n)-n.

Hybrid distribution H!,0 < j< q(n)

n+j

1. s, «<{0,1]
2. Run G, starting with iteration j+1 and with s, as input.

3. Output Sy(n)’
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PRFs from PRGs

Theorem 6.16 If there is a PRG G, then pseudorandom

functions exist.
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Truly random functions

Func, :={f:{0,1}" > {0,1}"}

Func, |=2"%

random function: f « Func_
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Pseudorandom function (PRF)

Definition 3.4 (restated) Let F: {0,1} x{0,1}" — {0,1}" be a
keyed, efficient and length-preserving function. F is called a

pseudorandom function, if for all ppt distinguishers D there is

a negligible function p such that forallne N

Pr[D0 (1) =1]-Pr[D)(1") =1] <u(n),

where k < {0,1}",f < Func_.
Func, :={f:{0,1}" > {0,1}"}
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Pseudorandom functions
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o

with distribution k < {0,1}’
35



From PRF to cpa-security

Construction 3.6 (restated) Let F: {0,1} x{0,1} - {0,1} bea

keyed, efficient, and length-preserving function. Define

I, = (Gen_,Enc_,Dec, ) as follows:

Gen_: oninput1:k < {0,1}".

Enc_: oninputkme {0,1}", choose r « {0,1}n and output
c:= (r,m OF, (r))

Dec.: oninputc=(r,s)e{0,1}" x{0,1}" and k €{0,1} output
m:=s®F (r).
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PRFs from PRGs

Theorem 6.16 If there is a PRG G, then pseudorandom

functions exist.

Construction 6.17 Let G be a PRG G with expansion factor
p(n)=2n. By G, (k),G, (k) denote the first and second half

of G's output. For every k define the function F_ as follows.

F: {01} - {01}’

x=x,..x, & G, (-(6, (G, (k))))
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PRFs from PRGs

G,(k G,(k
0 1 0 1

Gy(Gy(k)) G,(Gy(k)) Gy(Gy(k)) G,(G,(k))

o/ W1 o/ W o \ o \

F (011) =G, (G, (G, (k)))
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Hybrid distributions

H. distribution on a family of functions F, := {f }

distribution given by s « {0,1}Ir12i

scf0,1)"?
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Hybrid distributions

Hybrid H?
k —{0,11" k
« 10,1} . 1
G, (k G,(k
0 1 0 1
Go(Gy(K)) G,(Gy(k)) G(G,(k)) G,(G(Kk))

o/ \i o o N o \

F (011) =G, (G, (G, (k)))
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Hybrid distributions

Hybrid H'

k, <{0,1}" k, < {0,1}"

0

k

Gy (ko)

o/ \s

0

1

G,(ky)

o/

1

F. . (011)=G, (G, (k,))

Gy(ky)

o/ \
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Hybrid distributions
Hybrid H?
ko, < 10,1} k,, «{0,1}" k,, < {0,1}" k., < {0,1}

VAR vErv AR eHly A vl

k00k10k01k11

F (011) = G1(k1o)
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Hybrid distributions
Hybrid H"
k, —{0,1}",be{0,1}"

F_(011)

K,,,»se{0,1"™
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Hybrid distributions

H' distribution on a family of functions F' := {fs}se{o 1

distribution given by s « {0,1}"

— H’ pseudorandom function

— H? random function

— H and H" differ in one application of G

— Distinguisher for H' and H" leads to distinguisher
for H and H" for some i.

— Distinguisher for H. and H*" leads to distinguisher

for G and uniform distribution.
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Neccessary conditions

Theorem 6.18 If pseudorandom generators exist, then

one-way functions exist.

Theorem 6.19 If encryption schemes with indistinguishable
encryptions against eavesdropping adversaries exist, then

one-way functions exist.
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