Prof. Dr. Johannes Blömer Nils Löken

Cryptography - Provable Security SS 2017 Handout 4

Exercises marked (*) will be checked by tutors.

Exercise 1:

Let $l : \mathbb{N} \to \mathbb{N}$ be a polynomial with l(n) > n and let G be a deterministic polynomial-time algorithm such that for every $x \in \{0, 1\}^n$ algorithm G outputs a string of length l(n). We call G an almost-random generator if for every ppt algorithm \mathcal{A} there exists a negligible function μ such that \mathcal{A} wins the following game $\operatorname{Guess}_{\mathcal{A},G}(n)$ with probability at most $\frac{1}{2} + \mu(n)$.

Distribution guessing game $Guess_{\mathcal{A},G}(n)$

- A bit $b \leftarrow \{0, 1\}$ is chosen uniformly at random.
- If b = 1, then choose $x \leftarrow \{0, 1\}^{l(n)}$ uniformly at random. If b = 0, then choose $s \leftarrow \{0, 1\}^n$ and compute x := G(s). The string x is given to \mathcal{A} .
- \mathcal{A} outputs a bit $b' \leftarrow \mathcal{A}(1^n, x)$.
- \mathcal{A} wins the game if and only if b = b'.

Show that every pseudorandom generator is an almost-random generator.

Exercise 2 (4 points):

(*) Consider almost-random generators from exercise 1. Show that every almost-random generator G is a pseudorandom generator.

Exercise 3:

Prove that every pseudorandom permutation is a pseudorandom function.

Exercise 4 (4 points):

(*) Let F be a pseudorandom permutation. Consider the fixed-length encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$. $\text{Gen}(1^n)$ outputs $k \leftarrow \{0, 1\}^n$. $\text{Enc}_k(m)$, for input $m \in \{0, 1\}^{n/2}$, picks $r \leftarrow \{0, 1\}^{n/2}$ and outputs $F_k(r||m)$.

Construct algorithm Dec. Prove that Π is cpa-secure. Compare Π to Construction 3.6 from the lecture, discuss advantages and disadvantages of the schemes.

Exercise 5:

Consider the construction of a Feistel cipher for some arbitrary round function

$$f: \{0,1\}^l \times \{0,1\}^t \to \{0,1\}^t$$

with block length 2t and r rounds. Let $m \in \{0, 1\}^{2t}$ be a message and let c be the encryption of m with round keys k_1, k_2, \ldots, k_r for arbitrary $k_i \in \{0, 1\}^l$. Prove, that the *encryption* of c with the round keys $k_r, k_{r-1}, \ldots, k_1$ leads to the message m. **Hint:** Remember the difference of the last round.

Exercise 6:

What kind of influence do the following modifications of AES imply:

- We extend the last round of AES in such a way, that it does not differ from the other r-1 rounds.
- We remove the SubBytes operation from the algorithm.