Cryptography - Provable Security
 SS 2017
 Handout 4
 Exercises marked (${ }^{*}$) will be checked by tutors.

Exercise 1:

Let $l: \mathbb{N} \rightarrow \mathbb{N}$ be a polynomial with $l(n)>n$ and let G be a deterministic polynomial-time algorithm such that for every $x \in\{0,1\}^{n}$ algorithm G outputs a string of length $l(n)$. We call G an almost-random generator if for every ppt algorithm \mathcal{A} there exists a negligible function μ such that \mathcal{A} wins the following game $\operatorname{Guess}_{\mathcal{A}, G}(n)$ with probability at most $\frac{1}{2}+\mu(n)$.

Distribution guessing game $\operatorname{Guess}_{\mathcal{A}, G}(n)$

- A bit $b \leftarrow\{0,1\}$ is chosen uniformly at random.
- If $b=1$, then choose $x \leftarrow\{0,1\}^{l(n)}$ uniformly at random. If $b=0$, then choose $s \leftarrow\{0,1\}^{n}$ and compute $x:=G(s)$. The string x is given to \mathcal{A}.
- \mathcal{A} outputs a bit $b^{\prime} \leftarrow \mathcal{A}\left(1^{n}, x\right)$.
- \mathcal{A} wins the game if and only if $b=b^{\prime}$.

Show that every pseudorandom generator is an almost-random generator.
Exercise 2 (4 points):
$\left.{ }^{*}\right)$ Consider almost-random generators from exercise 1. Show that every almost-random generator G is a pseudorandom generator.

Exercise 3:

Prove that every pseudorandom permutation is a pseudorandom function.
Exercise 4 (4 points):
$\left.{ }^{*}\right)$ Let F be a pseudorandom permutation. Consider the fixed-length encryption scheme $\Pi=($ Gen, Enc, Dec $) . \operatorname{Gen}\left(1^{n}\right)$ outputs $k \leftarrow\{0,1\}^{n} . \operatorname{Enc}_{k}(m)$, for input $m \in\{0,1\}^{n / 2}$, picks $r \leftarrow\{0,1\}^{n / 2}$ and outputs $F_{k}(r \| m)$.
Construct algorithm Dec. Prove that Π is cpa-secure. Compare Π to Construction 3.6 from the lecture, discuss advantages and disadvantages of the schemes.

Exercise 5:

Consider the construction of a Feistel cipher for some arbitrary round function

$$
f:\{0,1\}^{l} \times\{0,1\}^{t} \rightarrow\{0,1\}^{t}
$$

with block length $2 t$ and r rounds. Let $m \in\{0,1\}^{2 t}$ be a message and let c be the encryption of m with round keys $k_{1}, k_{2}, \ldots, k_{r}$ for arbitrary $k_{i} \in\{0,1\}^{l}$. Prove, that the encryption of c with the round keys $k_{r}, k_{r-1}, \ldots, k_{1}$ leads to the message m.
Hint: Remember the difference of the last round.

Exercise 6:

What kind of influence do the following modifications of AES imply:

- We extend the last round of AES in such a way, that it does not differ from the other $r-1$ rounds.
- We remove the SubBytes operation from the algorithm.

