III. Pseudorandom functions & encryption

Eavesdropping attacks not satisfactory security model

- no security for multiple encryptions
- does not cover practical attacks
- → new and stronger security notion: indistinguishable encryption against chosen plaintext attacks

The indistinguishability game

Let A be a probabilistic polynomial time algorithm (ppt).

CPA indistinguishability game $PrivK_{A,\Pi}^{cpa}(n)$

- 1. $k \leftarrow Gen(1^n)$.
- 2. A receives input 1ⁿ and has oracle access to $\operatorname{Enc}_{k}(\cdot)$.

 Outputs two plaintexts $m_{0}, m_{1} \in \{0,1\}^{*}$ with $|m_{0}| = |m_{1}|$.
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$. c given to A.
- 4. A continues to have oracle access to $\operatorname{Enc}_{k}(\cdot)$. It outputs b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{cpa}(n) = 1$, if output is 1. Say A has succeded or A has won.

Oracle access

Algorithm D has oracle access to function $f: U \rightarrow R$, if D

- 1. can write elements $x \in U$ into special memory cells,
- 2. in one step receives function value f(x).

Notation Write $D^{f(\cdot)}$ to denote that algorithm D has oracle access to $f(\cdot)$.

The indistinguishability game

Definition 3.1 $\Pi=\left(\text{Gen,Enc,Dec}\right)$ has indistinguishable encryptions under chosen plaintext attacks (is cpa-secure) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$Pr[PrivK_{A,\Pi}^{cpa}(n)=1] \leq 1/2 + \mu(n).$$

Observation A cpa-secure encryption scheme cannot have a deterministic encryption algorithm.

Multiple messages

Multiple messages cpa game $PrivK_{A,\Pi}^{mult-cpa}(n)$

- 1. $k \leftarrow Gen(1^n)$.
- 2. A receives input 1ⁿ and has oracle access to $\text{Enc}_k(\cdot)$.

 A outputs two vectors of messages $\mathbf{M}_0 = \left(\mathbf{m}_0^1, \dots, \mathbf{m}_0^t\right)$, $\mathbf{M}_1 = \left(\mathbf{m}_1^1, \dots, \mathbf{m}_1^t\right)$ with $\left|\mathbf{m}_0^i\right| = \left|\mathbf{m}_1^i\right|$ for all i.
- 3. $b \leftarrow \{0,1\}, c_i \leftarrow Enc_k(m_b^i)$. $C = (c_1,...,c_t)$ is given to A.
- 4. A continues to have oracle access to $Enc_k(\cdot)$. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{mult-cpa}=1$, if output is 1. Say A has succeded or A has won.

CPA-security and multiple messages

Theorem 3.2 If encryption scheme $\Pi = (Gen, Enc, Dec)$ is cpa-secure, then it also has indistinguishable multiple encryption under chosen plaintext attacks.

CPA-security and blocks of messages

$$\Pi = (Gen, Enc, Dec)$$
 fixed length, $I(n) = 1$.

Define
$$\Pi' = (Gen', Enc', Dec')$$
 as follows

Gen': same as Gen

Enc': $\operatorname{Enc}_{k}'(m) = \operatorname{Enc}_{k}(m_{1})...\operatorname{Enc}_{k}(m_{s}),$

$$m = m_1 ... m_s, m_i \in \{0,1\}^{l(n)}$$

 $Dec': Dec'_k(c) = Dec_k(c_1)...Dec_k(c_s)$

Corollary 3.3 If encryption scheme $\Pi = (Gen, Enc, Dec)$ is cpa-secure, then $\Pi' = (Gen', Enc', Dec')$ is cpa-secure.

Truly random functions

Func_n :=
$$\{f : \{0,1\}^n \to \{0,1\}^n\}$$

$$|\mathsf{Func}_{\mathsf{n}}| = 2^{\mathsf{n}2^{\mathsf{n}}}$$

random function: $f \leftarrow Func_n$

Keyed functions

$$\begin{array}{cccc} F: & \left\{0,1\right\}^* \times \left\{0,1\right\}^* & \rightarrow & \left\{0,1\right\}^* \\ & \left(k,x\right) & \mapsto & F\left(k,x\right) \end{array}$$

called keyed function. Write $F(k,x) = F_k(x)$.

- F called length-preserving, if F is only defined for $(x,k) \in \{0,1\}^* \times \{0,1\}^*$ with |x| = |k| and if for all (x,k) $|F_k(x)| = |k| = |x|$.
- F called efficient, if there is a polynomial time algorithm A with $A(k,x) = F_k(x)$ for all $x,k \in \{0,1\}^*$.
- F called permutation, if for every n ∈ N and k ∈ $\{0,1\}^n$ $F_k : \{0,1\}^n \to \{0,1\}^n$ is bijective.

Oracle access

Algorithm D has oracle access to function $f: U \rightarrow R$, if D

- 1. can write elements $x \in U$ into special memory cells,
- 2. in one step receives function value f(x).

Notation Write $D^{f(\cdot)}$ to denote that algorithm D has oracle access to $f(\cdot)$.

Pseudorandom function (PRF)

Definition 3.4 Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a keyed, efficient and length-preserving function. F is called a pseudorandom function, if for all ppt distinguishers D there is a negligible function μ such that for all $n \in \mathbb{N}$

$$\left| \operatorname{Pr} \left[\operatorname{D}^{\operatorname{F}_{k}(\cdot)} \left(\operatorname{1}^{\operatorname{n}} \right) = 1 \right] - \operatorname{Pr} \left[\operatorname{D}^{\operatorname{f}(\cdot)} \left(\operatorname{1}^{\operatorname{n}} \right) = 1 \right] \leq \mu(n),$$

where $k \leftarrow \{0,1\}^n$, $f \leftarrow Func_n$.

$$\mathsf{Func}_{\mathsf{n}} := \left\{ \mathsf{f} : \left\{ \mathsf{0}, \mathsf{1} \right\}^{\mathsf{n}} \to \left\{ \mathsf{0}, \mathsf{1} \right\}^{\mathsf{n}} \right\}$$

Pseudorandom functions

with uniform distribution

with distribution $k \leftarrow \{0,1\}^n$

12

Truly random permutations

$$Perm_n := \left\{ f : \left\{0,1\right\}^n \to \left\{0,1\right\}^n | f \text{ is a permutation} \right\}$$

$$|Perm_n| = 2^n!$$

random permutation: $f \leftarrow Perm_n$

Pseudorandom permutation (PRP)

Definition 3.5 Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a keyed, efficient and length-preserving permutation. F is called a pseudorandom permutation, if for all ppt distinguishers D there is a negligible function μ such that for all $n \in \mathbb{N}$

$$\left| \mathbf{Pr} \left[\mathbf{D}^{\mathsf{F}_{\mathsf{k}}(\cdot)} \left(\mathbf{1}^{\mathsf{n}} \right) = \mathbf{1} \right] - \mathbf{Pr} \left[\mathbf{D}^{\mathsf{f}(\cdot)} \left(\mathbf{1}^{\mathsf{n}} \right) = \mathbf{1} \right] \leq \mu \left(\mathsf{n} \right),$$

where $k \leftarrow \{0,1\}^n$, $f \leftarrow Perm_n$.

From PRF to cpa-security

Construction 3.6 Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a keyed, efficient, and length-preserving function. Define $\Pi_{\scriptscriptstyle E} = (\mathsf{Gen}_{\scriptscriptstyle E}, \mathsf{Enc}_{\scriptscriptstyle E}, \mathsf{Dec}_{\scriptscriptstyle E})$ as follows:

- Gen_F: on input 1ⁿ, choose $k \leftarrow \{0,1\}^n$.
- Enc_F: on input k,m $\in \{0,1\}^n$, choose $r \leftarrow \{0,1\}^n$ and output $c := (r,m \oplus F_k(r))$.
- Dec_F: on input $c = (r,s) \in \{0,1\}^n \times \{0,1\}^n$ and $k \in \{0,1\}^n$ output $m := s \oplus F_k(r)$.

From PRF to cpa-security

Theorem 3.7 If F is a pseudorandom function, then $\Pi_{\rm F}$ as defined in Construction 3.6 is cpa-secure.

From adversaries to distinguishers

D on input 1ⁿ and oracle access to $f: \{0,1\}^n \rightarrow \{0,1\}^n$

- 1. Simulate $A(1^n)$. When A queries for an encryption of $m \in \{0,1\}^n$, answer as follows:
 - a) $r \leftarrow \{0,1\}^n$
 - b) Query $f(\cdot)$ to obtain f(r) and return $(r, m \oplus f(r))$.
- 2 When A outputs m_0, m_1 , choose $b \leftarrow \{0,1\}$, then
 - a) $r \leftarrow \{0,1\}^n$
 - b) Query $f(\cdot)$ to obtain f(r) and return $c := (r, m_b \oplus f(r))$.
- 3. Continue to simulate A and answer encryption queries as in 1. Let A's output be $b' \in \{0,1\}$. Output 1, if b = b', otherwise output 0.

A conceptual scheme

Define $\Pi_{\text{true}} = (\text{Gen}_{\text{true}}, \text{Enc}_{\text{true}}, \text{Dec}_{\text{true}})$ as follows:

 Gen_{true} : on input 1ⁿ, choose $f \leftarrow Func_n$.

Enc_{true}: on input $f, m \in \{0,1\}^n$, choose $r \leftarrow \{0,1\}^n$ and output $c := (r, m \oplus f(r))$.

Dec_{true}: on input $c = (r,s) \in \{0,1\}^n \times \{0,1\}^n$ and $f \in Func_n$ output $m := s \oplus f(r)$.

Remark

- The scheme is not an encryption scheme, because it is not efficient. It is only used in the proof of Theorem 3.7.
- The CPA indistiguishability experiment can be defined for this scheme.

From PRF to cpa-security – two basic claims

Claim 1 For all ppts A

$$\begin{split} & \left| \text{Pr} \left[\text{PrivK}_{A,\Pi_{F}}^{\text{cpa}} \left(n \right) = 1 \right] - \text{Pr} \left[\text{PrivK}_{A,\Pi_{\text{true}}}^{\text{cpa}} \left(n \right) = 1 \right] \right| \\ & = \left| \text{Pr} \left[D^{F_{k}(\cdot)} \left(1^{n} \right) = 1 \right] - \text{Pr} \left[D^{f(\cdot)} \left(1^{n} \right) = 1 \right] \right]. \end{split}$$

Claim 2 Let A be a ppt adversary in PrivK_{A,·} that on input 1ⁿ makes at most q(n) oracle queries. Then

$$\left| \operatorname{Pr} \left[\operatorname{Priv}_{A,\Pi_{\operatorname{true}}}^{\operatorname{cpa}}(n) = 1 \right] \right| \leq \frac{1}{2} + \frac{\operatorname{q}(n)}{2^n}.$$

The CCA indistinguishability game

CCA indistinguishability game $PrivK_{A,\Pi}^{cca}(n)$

- 1. $k \leftarrow Gen(1^n)$
- 2. A on input 1ⁿ has access to encryption algorithm $Enc_k(\cdot)$ and to decryption algorithm $Dec_k(\cdot)$. A outputs 2 messages $m_0, m_1 \in \{0,1\}^*$ of equal length.
- 3. b \leftarrow {0,1}, c \leftarrow Enc_k(m_b). c is given to A.
- 4. $b' \leftarrow A(1^n, c)$, here A has access to encryption algorithm $Enc_k(\cdot)$ and to decryption algorithm $Dec_k(\cdot)$, but query $Dec_k(c)$ is forbidden.
- 5. Output of experiment is 1, if b = b'. Otherwise output is 0.

CCA-security

Definition 3.8 $\Pi=\left(\text{Gen,Enc,Dec}\right)$ has indistinguishable encryptions under chosen ciphertext attacks (is cca-secure) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$Pr[PrivK_{A,\Pi}^{cca}(n)=1] \leq 1/2 + \mu(n).$$

Observation cpa-security does not imply cca-security.