June 14th, 2017 submission due: July 25th, 2017: 11 a.m.

Cryptographic Protocols

SS 2017

Handout 5

Exercises marked (*) will be checked by tutors.
We encourage submissions of solutions by small groups of up to four students.

Exercise 1:

Consider the Guillous-Quisquater identification protocol

Parameters: Choose RSA modulus $N := p \cdot q$ and some prime $e \in \mathbb{Z}_{\phi(N)}^*$. Chose private key $x \leftarrow \mathbb{Z}_N^*$. The corresponding public key is $(N, e, X = x^e \mod N)$.

Protocol: To prove her identity to V, the prover P runs the following protocol:

We know that this protocol is correct, a special honest-verifier zero-knowledge proof of knowledge, and has the special soundness property.

- a) Transform the GQ identification protocol to into a signature scheme: Employ the Fiat-Shamir heuristic in your construction to get rid of the interaction.
- b) Prove the correctness of your construction.

Exercise 2:

Consider the Fiat-Shamir identification protocol. Show that the protocol is witness indistinguishable and witness hiding. Provide an adequate assumption for your proof.

Exercise 3 (4 points):

(*) Consider relation R_{GI} with $R_{\text{GI}}((G_1, G_2), (\pi_1, \pi_2)) = 1 \Leftrightarrow \pi_1(G_1) = \pi_2(G_2)$, where $G_1 = (V, E), G_2 = (V, E')$ are graphs, $\pi_1, \pi_2 \in S_{|V|}$ are permutations and $\pi_1(G_1) = \pi_2(G_2)$ holds if and only if for all nodes $u, v \in V$ we have $\{u, v\} \in E \Leftrightarrow \{\pi_1(\pi_2^{-1}(u)), \pi_1(\pi_2^{-1}(v))\} \in E'$.

Protocol: A prover P proves knowledge of witness (π_1, π_2) for (G_1, G_2) to verifier V by running the following protocol:

$$\frac{P(G_1, G_2, \pi_1, \pi_2)}{\pi_c \leftarrow S_{|V|}} \qquad \qquad \frac{V(G_1, G_2)}{G := \pi_1(G_1)}$$

$$H := \pi_c(G)$$

$$\xrightarrow{H}$$

$$b \leftarrow \{1, 2\}$$

$$\xrightarrow{\pi_r}$$

$$\xrightarrow{\pi_r}$$

$$\xrightarrow{\pi_r}$$

$$\xrightarrow{\pi_r}$$

$$\xrightarrow{\pi_r}$$

Prove, that this protocol is witness indistinguishable.

Hint: Assume that the automorphism groups of all relevant graphs only contain the identity, i. e. for graph G and permutation π $\pi(G) = G$ implies $\pi = 1_{S_{|V|}}$.

For an example of a graph that does not have such a trivial automorphism group, consider the graph G = (V, E) with $V = \{1, 2, 3, 4, 5\}$, $E = \{\{3, 4\}, \{4, 5\}\}$. The automorphism group of G contains four permutations: nodes 1 and 2, as well as 3 and 5 can be exchanged with without changing the graph.

Exercise 4 (4 points):

(*) Consider the following attempt to an AND-composition of two instances of Schnorr's identification protocol.

Parameters: On input 1^l choose primes p,q such that q|p-1 and $q>2^l$, choose generator $z \in \mathbb{Z}_p^*$ and set $g:=z^{(p-1)/q}$, choose a private key $sk:=(x_1,x_2)\leftarrow \mathbb{Z}_q\times \mathbb{Z}_q$ and set public key $pk=(p,q,g,Y_1=g^{x_1}\mod p,Y_2=g^{x_2}\mod p)$.

Protocol: Prover P proves her identity to verifier V by running the the following protocol:

- Show that this protocol is complete and special honest verifier zero knowledge.
- Explain why special soundness does not hold for this protocol.

Hint: consider an prover who knows x_1 but not x_2 .

• Show that x_1, x_2 can be recovered from three transcripts (a, c, r), (a, c', r'), (a, c'', r'') with $c \neq c', c \neq c'', c' \neq c''$.

Exercise 5 (4 points):

(*) Design a protocol for the AND-composition of two instances of Schnorr's identification protocol, i. e. a Σ -protocol that proves knowledge of discrete logarithms $x_1, x_2 \in \mathbb{Z}_q$ for public values $g^{x_1} \mod p$, $h^{x_2} \mod p$ with $g, h \in \mathbb{Z}_p^*, g \neq h$.

Prove that your protocol is complete, special honest verifier zero-knowledge and has the special soundness property.