
Chapter 1 - Time and Space Complexity

I deterministic and non-deterministic Turing machine

I time and space complexity

I classes P,NP,PSPACE,NPSPACE

1 / 41

Deterministic Turing machines

Definition 1.1
A (deterministic 1-tape) Turing machine (DTM) is a 7-tuple
M = (Q,Σ, Γ, δ, q0, qaccept, qreject), where Q,Σ, Γ are finite sets
and

1. Q is the set of states,

2. Σ is the input alphabet not containing the start symbol B and
the blank symbol t,

3. Γ is the tape alphabet, where Σ ⊂ Γ and t,B ∈ Γ,

4. δ : Q\{qaccept, qreject} × Γ→ Q × Γ× {R, L} is the transition
function,

5. q0 is the start state, qaccept is the accept state, and qreject is
the reject state.

2 / 41

Schematic of a Turing machine

B 0 1 0 1 0 0 1 1 t t t . . .

control

head

3 / 41

Transition function

Semantics of transitions
δ(qi , a) = (qj , b,X) means that, if the machine is in state qi and
the head reads symbols a, then

1. the machine goes to state qj ,

2. the head writes the symbol b on the tape,

3. the machine directs the head to move right (X = R) or to
move left (X = L).

4 / 41

Restrictions

We always assume the following restrictions on δ:

I For all q ∈ Q:

δ(q,B) = (p,B,R) for some p ∈ Q .

I For all q ∈ Q and a ∈ Γ, a 6= B:

δ(q, a) = (p, b,D) with p ∈ Q, b ∈ Γ, b 6= B,D ∈ {L,R} .

5 / 41

Configurations

I A configuration of a DTM M is an element in Γ∗ × Q × Γ∗.
I M is in configuration αqβ, iff

1. the left-most cells of the tape contain αβ ∈ Γ∗, all other tape
cells contain t.

2. the head of the Turing machine is on the first symbol of β,
3. the state of the Turing machine is q.

Turing machine in configuration B010q710011

B 0 1 0 1 0 0 1 1 t t t . . .

q7

head

6 / 41

Computations - single steps

I step of a DTM , single application of transition function

I computation , sequence of steps

I configuration C1 yields configuration C2 iff DTM M can
legally go from C1 to C2 in one step

I C1 = uaqibv ,C2 = uqjacv , qi , qj ∈ Q, a, b, c ∈ Γ, u, v ∈ Γ∗,

I C1 yields C2, iff δ(qi , b) = (qj , c , L).

I C1 = uaqibv ,C2 = uacqjv , qi , qj ∈ Q, a, b, c ∈ Γ, u, v ∈ Γ∗,

I C1 yields C2, iff δ(qi , b) = (qj , c ,R).

7 / 41

Computations

I q0 B w , start configuration of DTM M on input w

I configuration C is an accepting configuration iff the state in C
is qaccept

I configuration C is a rejecting configuration iff the state in C
is qreject

I accepting and rejecting configurations are halting
configurations

I if a DTM M reaches a halting configuration the computation
of M halts

I if M is started on some input and never reaches a halting
state, we say that M loops

8 / 41

Computations

I DTM M accepts input w if a sequence of configurations
C1,C2, . . . ,Ck exists, where

1. C1 is the start configuration of M on input w ,
2. each Ci yields Ci+1,
3. Ck is an accepting configuration.

9 / 41

Turing machines and languages

Definition 1.2
The set of words w ∈ Σ∗ that DTM M accepts is called the
language accepted or recognized by M. We write

L(M) := {w ∈ Σ∗ | M accepts w.}

Definition 1.3
DTM M decides L(M), if M halts on every input w ∈ Σ∗.

Definition 1.4

1. L ⊆ Σ∗ is called Turing-recognizable or recursively enumerable
if some DTM M recognizes L.

2. L ⊆ Σ∗ is called Turing-decidable or decidable if some DTM
M decides it.

10 / 41

Time complexity

Definition 1.5
Let M be a DTM that halts on all inputs. The running time or
time complexity of M is the function f : N→ N, where f (n) is the
maximum number of steps that M uses on any input of length n.

If f (n) is the running time of M we say that M runs in time f (n)
and that M is an f (n) time Turing machine.

Customarily, n denotes the length of the representation of the
input.

11 / 41

Time complexity classes

Definition 1.6
Let t : N→ R+ be a monotonically increasing function. The time
complexity class DTIME(t(n)) consists of all languages that are
decidable by an O(t(n)) time DTM.

12 / 41

Space complexity and space complexity classes

Definition 1.7
Let M be a DTM that halts on all inputs. The space complexity of
M is the function f : N→ N, where f (n) is the maximum number
of tape cells that M scans on any input of length n.

If the space complexity of M is f (n) we say that M runs in space
f (n).

Definition 1.8
Let s : N→ R+ be a monotonically increasing function. The space
complexity class DSPACE(s(n)) consists of all languages that are
decidable by an O(s(n)) space DTM.

13 / 41

Multi-tape Turing machines

I A k-tape Turing machine (k-DTM) has k independent tapes,
each with its own read/write head.

I The transition function of a k-tape Turing machine is of the
form

δ : Q × Γk → Q × Γk × {L,R,S}k .

I δ(qi , a1, . . . , ak) = (qj , b1, . . . , bk ,X1,X2, . . . ,Xk) means that,
if the machine is in state qi and the heads 1 through k read
symbols a1, . . . , ak , then

1. the machine goes to state qj ,
2. the heads 1 through k write the symbols b1, . . . , bk on their

respective tapes,
3. the machine directs each head to move right (Xi = R), to

move left (Xi = L), or to stay put (Xi = S).

14 / 41

Schematic of a 3-tape Turing machine

B 0 1 0 1 0 t . . .

B 1 0 0 0 t t . . .

B 0 1 0 t t t . . .

control

head 1

head 3

head 2

15 / 41

Time and space complexity classes for multi-tape DTMs

Definition 1.9
Let t : N→ R+ be a monotonically increasing function. The time
complexity class DTIMEk(t(n)) consists of all languages that are
decidable by an O(t(n)) time k-DTM.

Definition 1.10
Let s : N→ R+ be a monotonically increasing function. The space
complexity class DSPACEk(s(n)) consists of all languages that are
decidable by an O(s(n)) space k-DTM.

16 / 41

1-tape vs. k-tape DTMs

Theorem 1.11
If language L can be decided by a O(s(n)) space k-DTM, then L
can be decided by a O(s(n)) space 1-DTM.

Theorem 1.12
If language L can be decided by a O(t(n)) time k-DTM, then L
can be decided by a O(t(n)2) time 1-DTM.

Corollary 1.13

For all k ∈ N

DTIMEk(t(n)) ⊆ DTIME(t(n)2).

17 / 41

1-tape vs. k-tape DTMs

Theorem 1.14
There is a language L that can be decided by a O(n) time 2-DTM,
but that cannot be decided by a 1-DTM with time complexity
o(n2).

Corollary 1.15

Let t : N→ R+ be a function with t(n) = o(n2). For all
k ∈ N, k ≥ 2

DTIMEk(n) 6⊆ DTIME(t(n)).

18 / 41

Classes P and PSPACE

Definition 1.16
P is the class of languages that are decidable in polynomial time
on a (single- or multi-tape) deterministic Turing machine. That is

P =
⋃
k∈N

DTIME(nk).

Definition 1.17
PSPACE is the class of languages that are decidable in polynomial
space on a (single- or multi-tape) deterministic Turing machine.
That is

PSPACE =
⋃
k∈N

DSPACE(nk).

19 / 41

Time and space

Theorem 1.18
Let f : N→ R+ be a function with f (n) ≥ n for all n ∈ N. If a
language L is in DSPACE(f (n)), then there is a 2O(f (n)) time
DTM that decides L.

20 / 41

Boolean formula and fully quantified Boolean formula

Boolean formula

I A Boolean formula ψ(x1, . . . , xl) is an expression over Boolean
variables x1, . . . , xl and the Boolean operators ∧,∨,¬.

I Example: ψ = (x1 ∨ ¬x2) ∧ x3 ∨ (¬x3 ∨ ¬x1).
I A fully quantified Boolean formula φ in prenex normal form is

an expression of the form Q1x1 . . .Qlxl ψ(x1, . . . , xl), where

1. ψ is a Boolean formula,
2. Qi ∈ {∃,∀}, i = 1, . . . , l .

I Example: φ = ∀x1∀x2∃x3 (x1 ∨ ¬x2) ∧ x3 ∨ (¬x3 ∨ ¬x1).

Remark
A fully quantified Boolean formula is either true , 1 or false , 0.

21 / 41

Definition 1.19
The language TQBF is defined as

TQBF := {〈φ〉 | φ is a true fully quantified Boolean formula

in prenex normal form.}

Example

φ = ∀x1∀x2∃x3 (x1 ∨ ¬x2) ∧ x3 ∨ (¬x3 ∨ ¬x1) is an element of
TQBF.

Theorem 1.20
TQBF ∈ PSPACE.

22 / 41

A space efficient algorithm for TQBF
T = ”On input 〈φ〉, a fully quantified Boolean formula:

1. If φ contains no quantifiers, then φ contains only constants.
Evaluate the expression.

2. If φ equals ∃x φ′, recursively call T on φ′, first with 0
substituted for x and then with 1 substituted for x .
If either result is accept, then accept, else reject.

3. If φ equals ∀x φ′, recursively call T on φ′, first with 0
substituted for x and then with 1 substituted for x .
If both results are accept, then accept, else reject.”

23 / 41

Recursion tree

∨

∧

∨

ψ

111

x3 = 1

ψ

110

x3 = 0

x2 = 1

∨

ψ

101

ψ

100

x2 = 0

x1 = 1

∧

∨

ψ

011

x3 = 1

ψ

010

x3 = 0

x2 = 1

∨

ψ

001

ψ

000

x2 = 0

x1 = 0

φ = ∃x1∀x2∃x3 ψ(x1, x2, x3) :

24 / 41

Nondeterministic Turing machines

Power sets
For a set M, we denote by P(M) the power set of M, i.e. the set
of all subsets of M.

Definition 1.21
A nondeterministic (1-tape) Turing machine (NTM) is a 7-tuple
N = (Q,Σ, Γ, δ, q0, qaccept, qreject), where Q,Σ, Γ, q0, qaccept, qreject
are as for deterministic Turing machines. The transition function δ
of a nondeterministic Turing machine is of the form

δ : Q\{qaccept, qreject} × Γ→ P(Q × Γ× {R, L}).

Nondeterministic multi-tape Turing machines are defined similarly.

25 / 41

Computations of NTMs

I If δ(qi , a) = {(r1, b1,X1), . . . , (rl , bl ,Xl)} and if NTM N is in
state qi and reads symbol a, then it can perform any of the l
steps described by the triples (rj , bj ,Xj) in δ(qi , a).

I Configurations, start configurations, accepting and rejecting
configurations for NTMs are defined as for DTMs.

I Depending on the set δ(qi , b) a configuration C = uaqibv of
an NTM can yield different configurations.

I Started with input w ∈ Σ∗ an NTM N = (Q,Σ, Γ,
δ, q0, qaccept, qreject) can perform different computations that
can be represented in a computation tree.

26 / 41

Computation tree of an NTM

K

K ′

Kr

rejecting branch

K ′′

Ka

accepting branch

accepting

configuration

rejecting

configuration

start configuration

27 / 41

NTMs and languages

I NTM N = (Q,Σ, Γ, δ, q0, qaccept, qreject) accepts w ∈ Σ∗ if
there is a computation of N started with w that ends in an
accepting configuration.

I The language L(N) of words recognized by N is defined as

L(N) := {w ∈ Σ∗ | N accepts w}.

I N always halts if for every w ∈ Σ∗ every computation branch
of N with input w is finite. An NTM N that always halts is
called a decider.

I NTM N decides language L(N) if N is a decider.

28 / 41

Nondeterministic time complexity

Definition 1.22
Let NTM N be a decider. The running time or time complexity of
N is the function f : N→ N, where f (n) is the maximum number
of steps that N uses on any computation branch on any input of
length n.

Definition 1.23
Let t : N→ R+ be a monotonically increasing function. The time
complexity class NTIME(t(n)) consists of all languages that are
decidable by an O(t(n)) time NTM.

29 / 41

Nondeterministic space complexity

Definition 1.24
Let N be a decider. The space complexity of N is the function
f : N→ N, where f (n) is the maximum number of tape cells that
N scans on any computation branch on any input of length n.

Definition 1.25
Let s : N→ R+ be a monotonically increasing function. The space
complexity class NSPACE(s(n)) consists of all languages that are
decidable by an O(s(n)) space NTM.

30 / 41

Example of a linear space NTM

Problems on NFAs

I ALLNFA := {〈A〉 | A is an NFA and L(A) = Σ∗}
I ALLNFA language consisting of all NFAs that reject at least

one word over their input alphabet.

31 / 41

Example of a linear space NTM
N = ”On input 〈A〉, where A is an NFA:

1. Place a marker on the start state of A.
2. Accept if the start state is not an accept state.
3. Repeat 2q times, where q is the number of states of A:
4. Nondeterministically select an input symbol and

change the positions of the markers on A’s states
to simulate reading that symbol.

5. Accept if none of the markers lie on accept states of A.
6. Reject.”

Theorem 1.26
N is a decider for ALLNFA with space complexity O(n), i.e.
ALLNFA ∈ NSPACE(n).

32 / 41

Nondeterministic polynomial time and space

Definition 1.27
NP =

⋃
k∈NNTIME(nk).

Definition 1.28
NPSPACE =

⋃
k∈NNSPACE(nk).

33 / 41

Deterministic and nondeterministic time

Theorem 1.29
Let t : N→ N be a function with t(n) ≥ n for all n ∈ N. If
language L can be decided by an O(t(n)) time (single-tape) NTM,
then L can be decided by a 2O(t(n)) time (single-tape) DTM.

34 / 41

Space constructible functions

Definition 1.30
Let f : N→ N be a function with f (n) ≥ n for all n ∈ N. Function
f is called space constructible if there is a O(f (n)) space DTM
that on input 1n (i.e. n 1’s) computes the binary representation of
f (n).

Examples

I f (n) = n is space constructible.

I f (n) = n2 is space constructible.

I f (n) = 2n is space constructible.

Remark
We will later generalize space constructibility to functions that
grow slower than linear.

35 / 41

Deterministic and nondeterministic space

Theorem 1.31 (Savitch’s theorem)

Let s : N→ N be a space constructible function with s(n) ≥ n for
all n ∈ N, then

NSPACE(s(n)) ⊆ DSPACE(s(n)2).

Yieldability problem
Given Two configurations c1, c2 of NTM N and time bound

t ∈ N.
Test Whether the NTM N can get from c1 to c2 within t

steps.

36 / 41

Procedure Canyield
T = ”On input configurations c1, c2 and t ∈ N:

1. If t = 1, then test directly whether c1 = c2 or whether
c1 yields c2 in one step according to the rules of N.
Accept if either test succeeds; reject if both fail.

2. If t > 1, then for each configuration cm of N on w
using space s(n):

3. Run Canyield(c1, cm,
t
2).

4. Run Canyield(cm, c2,
t
2).

5. If steps 3 and 4 both accept, then accept.
6. If have not accepted yet, reject.”

37 / 41

Deterministic s(n)2 space TM

Preliminaries

I cstart,w := q0 B w , i.e. start configuration of N on input w
I Modify N so that there is single accepting configuration

caccept: when N accepts,

1. it first clears its tape,
2. then moves the head to the leftmost cell.

I d chosen such that N has at most 2d ·s(n) configurations using
s(n) tape cells.

M, on input w :

1. Output the result of Canyield(cstart,w , caccept, 2
d ·s(n)).

38 / 41

PSPACE and NPSPACE

Corollary 1.32

PSPACE = NPSPACE.

39 / 41

Configuration graphs

Definition 1.33
Let M = (Q,Σ, Γ, δ, q0, qaccept, qreject) be Turing machine and
w ∈ Σ∗. The configuration graph of M on input w is the graph
G = (V ,E), where

1. V consists of the configurations of M on its computation
branches on input w,

2. for all c1, c2 ∈ V the tuple (c1, c2) is in E if c1 yields c2.

Remark
If M has space complexity s(n), then the configuration graph of M
on input w has 2O(s(|w |)) vertices.

40 / 41

Procedure Canyield
T = ”On input configurations c1, c2 and t ∈ N:

1. If t = 1, then test directly whether c1 = c2 or whether
c1 yields c2 in one step according to the rules of N.
Accept if either test succeeds; reject if both fail.

2. If t > 1, then for each configuration cm of N on w
using space s(n):

3. Run Canyield(c1, cm,
t
2).

4. Run Canyield(cm, c2,
t
2).

5. If steps 3 and 4 both accept, then accept.
6. If have not accepted yet, reject.”

Remark
For a NTM N = (Q,Σ, Γ, δ, q0, qaccept, qreject) and w ∈ Σ∗, the
procedure Canyield decides whether there is a (directed) path
from c1 to c2 of length at most t.

41 / 41

	Chapter 1 - Time and space complexity

