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1. Did Bob send message m, or was it Eve?

2. Did Eve modify the message m, that was sent by Bob?



Digital signatures

Digital signatures
— are equivalents of handwritten signatures
— guarantee authenticity and integrity of documents

- also guarantee non-repudiation



Digital signatures

Definition 2.1 A digital signature scheme II is a triple of
probabilistic polynomial time algorithms (ppts)
(Gen,Sign, Vrfy), where

1. Gen(1“) outputs a key pair (pk,sk) with pk

sk >n.

J

2. Sign takes as input a secret key sk and a message

m € {0,1} and outputs a signature o, ¢ < Sign_ (m).

3. Vrfy takes as input a public key pk, a message m e {0,1}*,

and a signature o. It ouputs be{0,1},1 £ valid,
0 £invalid. Vrfy deterministic, b: = Vrfy  (m,o).
For every key pair (pk,sk)and message m:

vrfy (m,Sign,, (m))=1.



Digital signatures

Definition 2.1 A digital signatur scheme I1 is a triple of probabilistic
polynomial time algorithms (ppts)(Gen,Sign, Vrfy), where

1. Gen(1") outputs a key pair (pk,sk) with pk = sk =n.

2. Sign takes as input a secret key sk and a message

m € {0,1} and outputs a signature o, ¢ < Sign_, (m).

3. Vrfy takes as input a public key pk, a message m e {0,1}*,
and a signature o. It ouputs b {0,1}, 1 £ valid,
0 £invalid. Vrfy determinitic, b: = Vrfy _ (m,o).
For every key pair (pk,sk)and message m: Vrfy (m,Sign,, (m))=1.

If (Gen,Sign, Vrfy) is such that for every (pk,sk) output byGen(1"),
algorithm Sign_, is only defined for m e {0,1}", then we say that
(Gen, Sign, Vrfy) is a signature scheme for messages of length (I(n).



Digital signatures

, Bob
vrfy (m,o);1 T / ¢ « Sign_ (m)




Security of digital signatures

- An adversary should not be able to compute the signature
for an arbitrary message even though he knows the public
key of correct signee.

— This should remain true, even if the adversary can get
signatures for messages of his choice.

- But the adversary must compute the signature for a new
message to be successful.

— Restrict adversaries to efficient ones.

— But adversaries should succeed only with tiny probability.



The forging game
Signature forging game Sig-forge,, , (n)

1. (pk,sk) « Gen(1").

2. Ais given 1",pk and oracle access to Sign_ (). It outputs
pair (m,c). Q: = set of queries made by A to Sign_ (-).

1,

3. Output of experiment is 1, if and only if (1) Vrfypk (m,O')
and (2) me O.

Definition 2.2 I1 is called existentially unforgeable under an

adaptive chosen-message attack, or secure, if for every ppt

adversary A there is a negligible function u: N — R" such that

Pr[Sig-forgeA,H (n)= 1:| <up(n). :



Oracle access

Algorithm D has oracle access to functionf:U - R, if

1. D can write elements x € U into special memory cells,
2. in one step receives function value f(x).

Notation Often write D' to denote that algorithm D has oracle

access to f(-).



Negligible functions

Definition 2.3 A function u:N — R" is called negligible, if
VeeN3n, eNVnxn, u(n)<1/nc.



RSA signatures - prerequisits

Ly, = ring of integers modulo N
z, = {aez,:gcd(a,N)=1}
o(N) = 1z

gcd(a,m)=1 = IJuveZu-a+v-m=1 (EEA)
= U-a=1modm
= u=a modm
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RSA signatures

Gen(1“) : choose 2 random primes p,q [2"‘1,2" - 1:|,
N:i=p-g.e«Z,,d:= e mod ¢(N),
pk :=(N,e),sk:=(N,d).

Sign_ (m) me {0,1}2"_2 interpreted as element in Z_,
o :=m‘ modN.

vrfy (m,oc) output 1, if and only if 6° =mmod N.
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RSA signatures - correctness

For special case m e Z_ based on

Lemma 24 LetNe N andmeZ then m ()—1modN
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RSA signatures - efficiency

Prime generation

1. choose p « [2“‘1,2“ - 1].

2. Test whether p is prime, if so output p, otherwise go
back to 1.

Efficiency based on

1. In [2"‘1,2" — 1] many primes exist (prime number theorem).
2. Efficient primality test exist (Miller-Rabin, AKS)
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RSA signatures - efficiency

Exponent generation
1. choosee « Z o(N)"

2. Test whether gcd(e,¢(N)) =1, if so compute d with
e-d=1mod ¢(N), otherwise go back to 1.

Efficiency based on

1. In Z,, many elements relatively prime to M exist.

2. Cancheck efficiently whether a,b € Z are relatively prime
using Eucledean algorithm.
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RSA signatures - efficiency

Efficiency of Sign and Vrfy based on

1. arithmetic in Z can be done efficiently.

2. Exponentiation requires few arithmetic operations
using Square-and-Multiply.
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RSA signatures - forgeries

existential forgeries

— Sign_ (0)=0
- Sign_ (1)=1
- Sign_ (-1) = -1

selective forgery of Sign_, (m)

— query signature oracle with input m:=2°m modN

and obtain &.
— compute 6 =276 modN.
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General problem of public-key cryptography

Secret key sk must not be efficiently computable from public
key pk!

General problem for RSA

Given (N,e) elementd e Z,, With e-d=1mod ¢ (N) must not
be efficiently computable.

Theorem 2.5 Given e,d,N, N=p-q for primes p,q, and with
e-d=1mod ¢(N), then the primes p,q can be computed in

time polynomial in log(N).

17



Status of factoring problem

Two factoring algorithms
— Number field sieve

running time exp(log(N)1/3 -Ioglog(N)2/3)
— Elliptic curve method

running time exp(log(p)1/2 .Ioglog(p)m),

where p smallest prime factor
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Existence of secure signatures

Theorem 2.6 Secure digital signature schemes exist if and

only if one-way functions exist.
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Inverting game

f: {0,1}* N {0,1}*, A a probabilistic polynomial time algorithm
Inverting game Invert, , (n)
1. x«{0,1}"y:= f(x).

2. A giveninput 1" and y, outputs x’.
3. Output of game is 1, if f(x’) = y, otherwise output is 0.

Write Invert, , (n) =1, if output is 1. Say A has succeded or A

has won.
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Definition of one-way function
Definition 2.7 £:{0,1}" — {0,1}" called one-way, if

1. there is a ppt M, with M, (x) = f(x) for all x € {0,1}’
2. for every probabilistic polynomial time algorithm A there
is a negligible function u: N — R" such that

Pr|Invert, (n)=1]<p(n).

Notation Pr [A(f(x))ef"(f(x))]<pn(n)

x<—{0,1}n
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Candidate
1. £ ... {01} — {01}

X > (x1.x2,

X,

),

x, =[|x/2|, and identify bit strings and

X,

J

where x, =[x /2]

integers via binary representations.

Idea Multiplication easy, factoring hard
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Definition of one-way permutation

f:{0,1}* - {0,1}* length preserving, if for all x |f(x)| =X

f =1

"o

, restriction of f to {0,1}".

Definition 2.8 A one-way function f: {0,1}* N {0,1}* is called
one-way permutation, if

1. f is length-preserving,
2. for every ne N the function f_is a bijection.
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One-time signatures

One-time signature forging game Sig-forge3s (n)

1. (pk,sk) « Gen(1").
2. Ais given 1",pk and may ask single query m’ to Sign_ (-).
It outputs pair (m,c),where m=m’.

3. Output of experiment is 1, if and only if (1) Vrfy_ (m,c)=1.

Definition 2.8 I1 is called existentially unforgeable under a
single message attack or 1-time signature, if for every ppt

adversary A there is a negligible function 1 : N — R" such that

Pr[Sig-forge:’:; (n)= 1] <p(n). .



Lamport‘s one-time signature

Construction 2.9 f:{0,1}* — {0,1}*, signature scheme

I1, = (Gen,Sign,Vrfy) for messages of length I(n) defined as:

Gen(1"): x,, <101}y, =f(x,).i=1...,n,be{0,1}.
ok := Yio Yao 7 Yno
Yir Y21 0 Yag
Sk ‘= X0 X0 " X
X1 X1 0 X4
Sign_ (m):  outputo:= (xtm1 N . ),m =m,---m .

vrfy, (m,c): output=1ey, = f(xi,mi) fori=1,...,n.



Lamport‘s one-time signature

Theorem 2.10 If f is a one-way function, then II. from Construction 2.9

is a 1-time signature.

m’ ;= message whose signature is requested by A
(m,o):= A’s final output

Adverary A outputs forgery at (i,b),if
— Vrfypk (m,c) =1

— mi=bandmi¢mi'
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From forger to inverter

| on inputy’
1. Choose i’ «{1,...,n},b" < {0,1}.
2. Forallie{1,...,n},be{0,1} with (i,b)=(i",b") do
choose x, < {0,1}", sety,, := f(xi,b),yi*’b* =y
Yio Y20 = Yo
Yii Ya1 0 Yo

4. When A requests a signature on message m’:
— ifm’ =b’, stop

3. Simulate A on input pk: = (

— otherwise return the correct signature ¢ = (x1 e X )
| 'n

5. When A outputs (m,c) with ¢ =(x,,...,X_)
— if A outputs a forgery at (i*,b*), output x...
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What have we achieved, what’s missing?

= just a one-time signature, where

= keys are longer than messages

= need to decouple key and message length

= |Jeads to simple, but inefficient and cumbersome
signature scheme for messages of fixed, but arbitrary

length

= these show that secure signatures schemes can be
constructed from 1-way functions

= constructions on other simpler ingredients also known

= key ingredient will be collision-resistant hash functions28



Hash functions

Definition 2.11 A hash function is a pair IT = (Gen,H)
of ppts, where

1. Gen(1“) takes as input 1" and outputs a key s.
2. H is deterministic, it takes as input 1", a key s, and
x €{0,1}". There is a polynomial I:N — N such that
if s was generated with input 1", then H(s,x) e {0,1}'(").
Write H® (x) for H(s,x).

If H® is defined only for inputs x {0,1}"(") for some

polynomial I’, then IT is a fixed-length hash function for
inputs of length I’ (n).
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The collision-finding game

Collision-finding game Hash-coll,  (n)

1. s« Gen(1").

2. Aisgiven 1" and s. It outputs x,x’ (with length I(n) if
IT is fixed-length).

3. Output of experiment is 1, if and only if x # x” and
H® (x) =H*(x’). Say A has found collision.

Definition 2.12 IT = (Gen,H) called collision-resistant, if for

every probabilistic polynomial time adversary A there is a

negligible function u: N — R" such that
Pr[Hash-coll,  (n)=1]<p(n). 30



Weaker notions

1. coll.-res.

2. 2"-preimage res. given s,x, find x’ = x with H® (x) = H*(x’)

3. pre-image res.  given s,y =H°(x), find x’ with H* (x") =y

Fact Under appropriate assumptions
coll.res. = 2" -preimage res. = pre-image res.
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A generic attack & birthday paradoxon
He:{0,1} —{0,1}" fors €{0,1}"

On input s € {0,1}'
1. Choose ge N
2. x1,...,xq<—{0,1} ¥, :=H°(x,)
3. ifthere existi,j,i# j, suchthaty = y;, output (xi,xj),
otherwise output 1.

Fact Assume that for all Xy5..s X, € {0,1}* pairwise distinct and
ally,,...,y € {0,1}Irl we have Pr[‘v’i :H(x,)= yi] =2"" then

1 —
q(ZC!I“'Z )SPr[Hi!je{1u°°°!q}’i¢j:yi=yj:lsq(2qn+1 ) 32




Hash-and-Sign
Y’ =(Gen’,Mac’,Vrfy’) sig. scheme with message length I(n),
I1=(Gen,,H) hash function with hash length I(n).

Construction 2.13 Sig. scheme Y = (Gen,Sign,Vrfy) defined as:
Gen(1") ; (pk’,sk’) « Gen’(1“),s < Gen, (1“),
pk = (pk’,s), sk = sk’
Sign_ (m): o:=Sign, (Hs (m))
Vrfy , (m,6) output=1&1=Vry’, (H*(m),0).

Theorem 2.14 If Y’ is secure and II is collision-resistant,

then Y is secure.
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Hash-and-Sign

A := adversary against Y’

Signature forging game Sign-forge,, .. (n)

1. (pk,sk) « Gen(1").

2. Ais given 1",pk and oracle access to Sign_(-). It outputs

pair (m,c). Q: = set of queries

3. Output of experiment is 1, if and only if (1) Vrfy , (m,o)

and (2) me Q.

Coll:=dm’ e @ :H*(m’) = H*(m)

Pr [Sign-forgeA,T(n) = 1:| < Pr

+ Pr

made by A to Sign_, (-).

1,

:Sign-forge ax(n) = 1\—.Coll:|

Coll ]
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Collision-finder A,

A, oninput 1" and s < Gen,_

1.
2.

Run Gen’ to obtain key (pk’, sk’).
Simulate A. Whenever A queries its Sign-oracle Sign_ ()

on a message m’, do:

a) Compute h:=H*(m’).

b) Compute ¢’ :=Sign_, (h) and return ¢’ to A.
Let Q be the set of queries made by A and let (m,o) be
A's answer. If there is an m’ € Q with H*(m’) = H*(m),

return the pair (m,m’), otherwise return "failure".
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Sign-forger A,
A, on input 1" and and oracle access to Sign_ ()

1. Run Gen, to obtain key s.
2. Simulate A. Whenever A queries its Sign-oracle Sign_(-)
on a message m’, do:
a) Compute h:=H*(m’).
b) Query Sign/,.(-) on input h to obtain ¢ := Sign’,, (h),
return ¢’ to A.

3. Let Q be the set of queries made by A. If A returns a
pair (m,t) such that H*(m) = H*(m’) for all m’ € Q, then

return pair (Hs (m),t), otherwise return "failure".
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Stateful signatures

Definition 2.15 A stateful signature scheme II is a triple of
probabilistic polynomial time algorithms (ppts)
(Gen,Sign,Vrfy), where

1. Gen(1") outputs a key pair (pk,sk) with pk|, sk =n
and a state s,.
2. Sign on input a secret key sk, a state s_,, and

message m € {0,1}",outputs a signature ¢ and a state s,.

3. Vrfy takes as input a public key pk, a message m e {0,1}*,
and a signature o. It ouputs b €{0,1}.

For every key pair (pk,sk), state s ,and message m:
vrfy (m,Signsk,si_1 (m)) =1.
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Stateful signatures - remarks

1. If (Gen,Sign,Vrfy) is such that for every (pk,sk) output byGen(1"),

algorithm Sign_, is only defined for m € {0,1}'”, then we say that

(Gen, Sign, Vrfy) is a stateful signature scheme for messages of
length I(n).

2. The verfication algorithm does not need the state to verify
signatures.
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From 1-time signatures to stateful signatures
I1 = (Gen, Sign, Vrfy) (1-time) signature scheme.

| = I(n) := number of signatures to be computed (known in advance)

1’ = (Gen’,Sign’, Vrfy)

Gen’ runs Gen to obtain | pairs (pk,,sk.), state s set to 1.
pk is the sequence of public keys pk., sk is the sequence of secret
keys s..

Sign’ on input sk,s and message m, sets ¢ « Sign_, (m), s:=s +1.
Vrfy’ on input (m,s) outputs 1, iff there is anie{1,...,1} such that

vy, (m,c) =1.
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From 1-time signatures to stateful signatures

IT = (Gen,Sign, Vrfy) (1-time) signature scheme for messages of length 2n
and such that Gen(1") outputs public keys of length n.

= (Gen’,Sign’,Vrfy’), stateful for messages of length n.

Gen’ runs Gen to obtain a pair (pk,sk) = (pk,,sk.), state s is the
empty string e.

Sign’ on input sk, s and message m,, runs Gen to obtain (pk.,,sk. .),
o, « Sign_ (m. [/ pk. ) and add (m. ,pk o) to the state.

i+1 ’ |+1 )

The signature for m. is {(mj.,pkj.”,(sj)}j and (pk. ,,0;).

Vrfy’ oninput (pk,,,c,,{(m ,pk_,,c,)} ) outputs 1, iff

Vrfypkj (m, [pk,,,0,)=1forj=1,..,i.
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Tree-based signatures

IT = (Gen,Sign, Vrfy) (1-time) signature scheme for messages of length 2n
and such that Gen(1") outputs public keys of length n.

For me {0,1}" denote by m|, the prefix of m of length i.

IT* = (Gen’,Sign",Vrfy*) is a stateful signature scheme for messages of
length n.

Gen” on input 1" : compute (pk_,sk_), output pubic ley pk_and state
s=sk.
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Tree-based signatures - Sign

Sign® on input m € {0,1}" and state:
1. fori=0ton-1:

— if pk _O,pk and ¢ m, are not in the state, compute

) <« Gen(1"), and

Rt

(Pk,, .-k, ;) < Gen(1"),(pk

\1’

S, <—S|gn ( " Ipk_ 4)- Add these values to state.

2. ifo_ is notin the state, compute o_ « Sign_ (m).

3. output the signature ({(c_ ,pkmo,pkm )}I 010, )-

Remark: Sign” uses each key on at most one message.
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Tree-based signatures

//////’//”’— pks

dkﬂ1

m| 10 pkﬂ1=pk 2

Pk
leaves = messages

key in parent node to compute signature of concatenation of
public keys in children. 43



Tree-based signatures - Vrfy

Vrfy” on input a public key pk_, message m, and signature
({(<5Irn Pk 0,pkIrn )}I ,»0. ), output 1, iff
1. Vrfypkmi( ||pk 110, )=1fori=0,...,n-1

2. Vrfy, (m,om) =1.

Theorem 2.16 If IT is a one-time signature, then IT is a secure

signature scheme for messages of length n.
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From A" to A (1)

A on input public key pk:
e choose random index i’ < {1,...,I'}. Construct list pk’,...,pk' of keys
as follows:

— set pk' :=pk
— for izi, compute (pk',sk') « Gen(1").
e run A’ oninput pk_=pk'. When A" requests a signature on m, do:

1. fori=0ton-1:

— if the values pk_ ,pk_ ., and c,, have not been defined,

set pk_ ,,pk, , to the next unused keys pk’,pk’*!, and

m,1
compute signature ¢ onpk Ipk_ , with key pk .

2. ifo_ is not yet defined, compute a signature c_ on m with key pk_.

3. give ({(omi,pkmio,pkmi1)};:;,om) to A'.
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From A" to A (2)

e if A" outputs a valid signature ({(o], ,pk o,pk )} c’)on

i=0

message m, then

case 1. if thereis a j<n-1such that pk;1j0 # pkrnjo or
pkr’nj1 # pkmj1, take minimal j and let i be such that
pk' = pkr’nj = pkmj. Ifi=i, output (pk’ , Ipk” "r'nj)-
case 2: if case 1 does not hold, then pk’ = pkm. Let i be such

that pk' =pk_. Ifi=i", output (m,c”).
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RSA signatures - prerequisits

Ly, = ring of integers modulo N
z, = {aez,:gcd(a,N)=1}
o(N) = 1z

gcd(a,m)=1 = IJuveZu-a+v-m=1 (EEA)
= U-a=1modm
= u=a modm
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RSA signatures

Gen(1“) : choose 2 random primes p,q [2"‘1,2" - 1:|,
N:i=p-g.e«Z,,d:= e mod ¢(N),
pk :=(N,e),sk:=(N,d).

Sign_ (m) me {0,1}2"_2 interpreted as element in Z_,
o :=m‘ modN.

vrfy (m,oc) output 1, if and only if 6° =mmod N.
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RSA signatures - forgeries

existential forgeries

— Sign_ (0)=0
- Sign_ (1)=1
- Sign_ (-1) = -1

selective forgery of Sign_, (m)

— query signature oracle with input m:=2°m modN

and obtain &.
— compute 6 =276 modN.
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Random oracle model (ROM)

Goal Construct H: {0,1}* —R,R < «,"random" function.

— Ifx=x, forx, € Q, return H(x,).

— Ifx=x forallx €Q,

a) y<R
b) return H(x)=y
c) add pair (x,H(x)) to Q 50



Random oracle model (ROM)

= Random oracle model idealization of
— one-way functions
- random functions
— collision-resistant hash functions.
* |n practice they can not be implemented in this form.

= Often collision-resistant hash functions used instead.
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RSA-Full-Domain-Hash (RSA-FDH)

By Gen denote an algorithm that on input 1" computes
2 random primes p,qe [2“‘1,2“ - 1],p #(q, setsN=p-q,

chooses e « Z; ,, sets d:=e™ mod ¢(N), and outputs

pk :=(N,e),sk :=(N,d).

Construction 2.17 (RSA-FDH)
— Run Gen(1“) to obtain pk:=(N,e) and sk:=(N,d).

LetH:{0,1} — Z_ be modeled as a random oracle.
— Sign oninputme{0,1}" and (N,d) outputs
= (H(m))oI mod N.
— Vrfy on input m,c,(N,e) outputs 1 <> ¢° =H(m)mod N.



RSA assumption
RSA inverting game RSA-inv, . (n)
Run Gen to obtain (N,e).
Y & Zy-
Ais given (N,e) and y. A outputs x € Z,,.

> @b =

Output of experiment is 1, if and only if x°* =y modN.

Write RSA-inv, . (n)=1, if output s 1.

Definition 2.18 The RSA problem is hard relative to the
generation algorithm Gen if for every ppt adversary A there

is a negligible function u: N — R™ such that

Pr[RSA-inv, . (n)=1]<p(n). .



RSA assumption

Construction 2.19 (RSA-FDH)
— Run Gen(1") to obtain pk :=(N,e) and sk :=(N,d).

LetH: {0,1}* — Z,, be modeled as a random oracle.
— Sign on input m e {0,1}* and (N,d) outputs
o= (H(m))cI mod N.

— oninput m,c,(N,e) output1 < ¢° =H(m)modN.

Theorem 2.20 If the RSA problem is hard relative to the
generation algorithm Gen, then RSA-FDH (Construction 2.19)
is existentially unforgeable under an adaptive

chosen-message attack. -



From forger to inverter
Signature forging game Sig-forge, , (n)

1. (pk,sk) < Gen(1").
2. Ais given 1",pk and oracle access to Sign_ (-). It outputs

pair (m,c). Q: = set of queries made by A to Sign_,_(-).

3. Output of experiment is 1, if and only if (1) Vrfy , (m,c) =1,
and (2) me O.
Assume:

1. A never queries for the same hash value twice.
2. Before querying Sign_ () on message m, A queries H(:)

on m.

Let g =q(n) denote number of hash queries made A,

q bounded by polynomial in n.

55



From forger to inverter
| on input (N,e,y*)
1. Choose j« {1,...,q}.
2. Simulate A with public key (N,e). Table T stores triples
(m,,0,,y,) with meaning that | has set H(m,) =y, and
o =y, modN.
3. When A makes i-th random oracle query H(m,), do
— ifi=j, returny’
— otherwise, 6, < Z,y. = [Gf mod N], returny,,
add (m,c,,y,) to T.
When A makes signature query m=m,, do
— if i# j, then T contains triple (m,,c,,y,), return ..
— ifi=j, then abort experiment.
4. Let (m,0)be A's output. If m=m and ¢° =y" modN,
then output c.
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Certificates and trusted authorities

How can we guarantee that pk, belongs to A?

— certificates from trusted authorities (TA)
— certificates are signatures
— leads to hierarchie of certificates/signatures

— must stop at (really) trusted authority
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