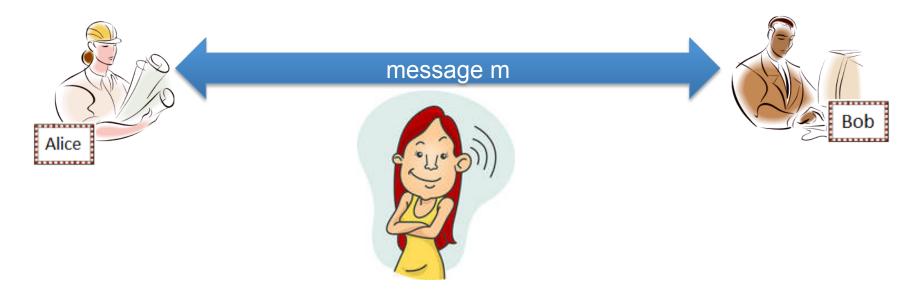
II. Digital signatures



- 1. Did Bob send message m, or was it Eve?
- 2. Did Eve modify the message m, that was sent by Bob?

Digital signatures

- are equivalents of handwritten signatures
- guarantee authenticity and integrity of documents
- also guarantee non-repudiation

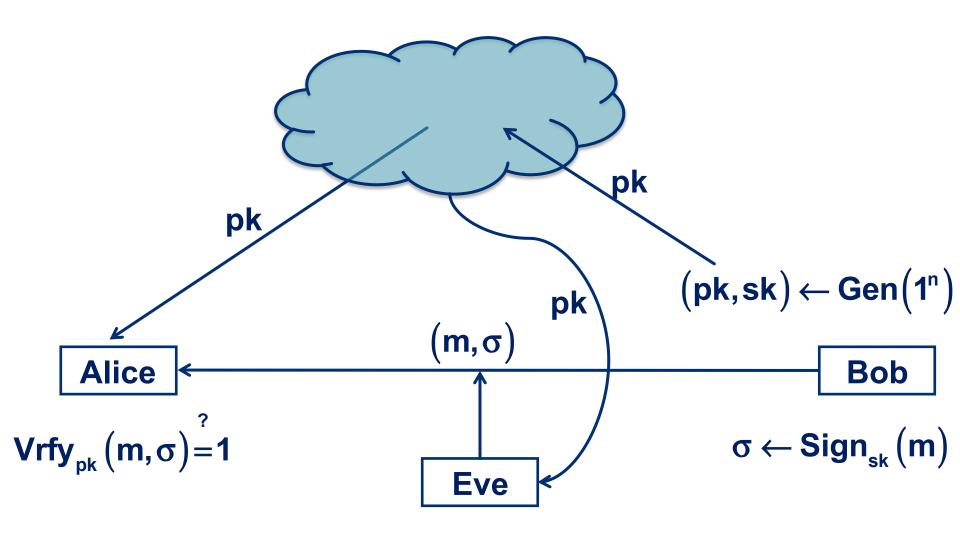
- Definition 2.1 A digital signature scheme Π is a triple of probabilistic polynomial time algorithms (ppts) (Gen,Sign,Vrfy), where
 - 1. Gen(1ⁿ) outputs a key pair (pk,sk) with |pk|, $|sk| \ge n$.
 - 2. Sign takes as input a secret key sk and a message $m \in \{0,1\}^*$ and outputs a signature $\sigma, \sigma \leftarrow \text{Sign}_{sk}(m)$.
 - 3. Vrfy takes as input a public key pk, a message m ∈ {0,1}*, and a signature σ. It ouputs b ∈ {0,1}, 1 ≜ valid,
 0 ≜ invalid. Vrfy deterministic, b: = Vrfy_{pk} (m, σ).
- For every key pair (pk,sk) and message m: $Vrfy_{pk}(m,Sign_{sk}(m)) = 1$.

Definition 2.1 A digital signatur scheme Π is a triple of probabilistic polynomial time algorithms (ppts) (Gen, Sign, Vrfy), where

- 1. Gen(1ⁿ) outputs a key pair (pk,sk) with |pk| = |sk| = n.
- 2. Sign takes as input a secret key sk and a message $m \in \{0,1\}^*$ and outputs a signature σ , $\sigma \leftarrow \text{Sign}_{sk}(m)$.
- 3. Vrfy takes as input a public key pk, a message $m \in \{0,1\}^*$, and a signature σ . It ouputs $b \in \{0,1\}$, $1 \triangleq valid$, $0 \triangleq invalid$. Vrfy determinitic, $b := Vrfy_{pk}(m,\sigma)$.

For every key pair (pk,sk) and message m: $Vrfy_{pk}(m,Sign_{sk}(m)) = 1$.

If (Gen,Sign,Vrfy) is such that for every (pk,sk) output byGen(1ⁿ), algorithm Sign_{sk} is only defined for $m \in \{0,1\}^{l(n)}$, then we say that (Gen, Sign, Vrfy) is a signature scheme for messages of length (l(n).



Security of digital signatures

- An adversary should not be able to compute the signature for an arbitrary message even though he knows the public key of correct signee.
- This should remain true, even if the adversary can get signatures for messages of his choice.
- But the adversary must compute the signature for a new message to be successful.
- Restrict adversaries to efficient ones.
- But adversaries should succeed only with tiny probability.

The forging game

Signature forging game Sig-forge_{A, Π} (n)

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ,pk and oracle access to Sign_{sk} (·). It outputs pair (m, σ). \mathcal{Q} : = set of queries made by A to Sign_{sk} (·).
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m,\sigma) = 1$, and (2) $m \notin Q$.

Definition 2.2 Π is called existentially unforgeable under an adaptive chosen-message attack, or secure, if for every ppt adversary A there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that

$$Pr[Sig-forge_{A,\Pi}(n)=1] \le \mu(n).$$

Oracle access

Algorithm D has oracle access to function $f: U \rightarrow R$, if

- 1. D can write elements $x \in U$ into special memory cells,
- 2. in one step receives function value f(x).

Notation Often write $D^{f(\cdot)}$ to denote that algorithm D has oracle access to $f(\cdot)$.

Negligible functions

Definition 2.3 A function $\mu:\mathbb{N}\to\mathbb{R}^+$ is called negligible, if

$$\forall \mathbf{c} \in \mathbb{N} \exists \mathbf{n_0} \in \mathbb{N} \forall \mathbf{n} \geq \mathbf{n_0} \mu(\mathbf{n}) \leq 1/\mathbf{n^c}$$
.

RSA signatures - prerequisits

$$\mathbb{Z}_{N}$$
 := ring of integers modulo N \mathbb{Z}_{N}^{*} := $\left\{a \in \mathbb{Z}_{N} : \gcd(a,N) = 1\right\}$ $\phi(N)$:= $\left|\mathbb{Z}_{N}^{*}\right|$

$$gcd(a,m) = 1 \Rightarrow \exists u, v \in \mathbb{Z} u \cdot a + v \cdot m = 1 \text{ (EEA)}$$

 $\Rightarrow u \cdot a = 1 \mod m$
 $\Rightarrow u = a^{-1} \mod m$

$$\mathbf{N} = \prod_{i=1}^{K} \mathbf{p}_{i}^{\mathbf{e}_{i}} \quad \Rightarrow \quad \phi\left(\mathbf{N}\right) = \prod_{i=1}^{K} \left(\mathbf{p}_{i}^{\mathbf{e}_{i}} - \mathbf{p}_{i}^{\mathbf{e}_{i}-1}\right) = \mathbf{N} \cdot \prod_{i=1}^{K} \left(1 - 1/\mathbf{p}_{i}\right) \cdot$$

RSA signatures

```
\begin{split} \text{Gen}\big(1^n\big)\colon & \text{choose 2 random primes p,q} \in \left[2^{n-1},2^n-1\right], \\ & \text{N} := p \cdot q, e \leftarrow \mathbb{Z}_{\phi(N)}^*, d := e^{-1} \ \text{mod} \ \phi\left(N\right), \\ & \text{pk} := \left(N,e\right), \text{sk} := \left(N,d\right). \\ & \text{Sign}_{\text{sk}}\left(m\right) & \text{m} \in \left\{0,1\right\}^{2n-2} \ \text{interpreted as element in } \mathbb{Z}_N, \\ & \sigma := m^d \ \text{mod} \ N. \\ & \text{Vrfy}_{\text{pk}}\left(m,\sigma\right) & \text{output 1, if and only if } \sigma^e = m \ \text{mod} \ N. \end{split}
```

RSA signatures - correctness

For special case $m \in \mathbb{Z}_{N}^{*}$ based on

Lemma 2.4 Let $N \in \mathbb{N}$ and $m \in \mathbb{Z}_N^*$, then $m^{\phi(N)} = 1 \mod N$.

RSA signatures - efficiency

Prime generation

- 1. choose $p \leftarrow [2^{n-1}, 2^n 1]$.
- 2. Test whether p is prime, if so output p, otherwise go back to 1.

Efficiency based on

- 1. In $[2^{n-1}, 2^n 1]$ many primes exist (prime number theorem).
- 2. Efficient primality test exist (Miller-Rabin, AKS)

RSA signatures - efficiency

Exponent generation

- 1. choose $e \leftarrow \mathbb{Z}_{\phi(N)}$.
- 2. Test whether $gcd(e, \phi(N)) = 1$, if so compute d with $e \cdot d = 1 \mod \phi(N)$, otherwise go back to 1.

Efficiency based on

- 1. In \mathbb{Z}_{M} many elements relatively prime to M exist.
- 2. Can check efficiently whether $a,b \in \mathbb{Z}$ are relatively prime using Eucledean algorithm.

RSA signatures - efficiency

Efficiency of Sign and Vrfy based on

- 1. arithmetic in \mathbb{Z}_{N} can be done efficiently.
- Exponentiation requires few arithmetic operations using Square-and-Multiply.

RSA signatures - forgeries

existential forgeries

- $\operatorname{Sign}_{sk}(0) = 0$
- Sign_{sk} (1) = 1
- $\operatorname{Sign}_{sk}(-1) = -1$

selective forgery of $Sign_{sk}(m)$

- query signature oracle with input m̂ := 2^em mod N
 and obtain σ̂.
- compute $\sigma = 2^{-1}\hat{\sigma} \mod N$.

General problem of public-key cryptography

Secret key sk must not be efficiently computable from public key pk!

General problem for RSA

Given (N,e) element $d \in \mathbb{Z}_{\phi(N)}^*$ with $e \cdot d = 1 \mod \phi(N)$ must not be efficiently computable.

Theorem 2.5 Given e,d,N, $N = p \cdot q$ for primes p,q, and with $e \cdot d = 1 \mod \phi(N)$, then the primes p,q can be computed in time polynomial in log(N).

Status of factoring problem

Two factoring algorithms

Number field sieve

running time
$$\exp(\log(N)^{1/3} \cdot \log\log(N)^{2/3})$$

Elliptic curve method

running time
$$\exp(\log(p)^{1/2} \cdot \log\log(p)^{1/2})$$
, where p smallest prime factor

Existence of secure signatures

Theorem 2.6 Secure digital signature schemes exist if and only if one-way functions exist.

Inverting game

 $f: \{0,1\}^* \to \{0,1\}^*$, A a probabilistic polynomial time algorithm Inverting game Invert_{A,f} (n)

- 1. $x \leftarrow \{0,1\}^n, y := f(x)$.
- 2. A given input 1^n and y, outputs x'.
- 3. Output of game is 1, if f(x') = y, otherwise output is 0.

Write Invert_{A,f} (n) = 1, if output is 1. Say A has succeded or A has won.

Definition of one-way function

Definition 2.7
$$f: \{0,1\}^* \rightarrow \{0,1\}^*$$
 called one-way, if

- 1. there is a ppt M_f with $M_f(x) = f(x)$ for all $x \in \{0,1\}^*$
- 2. for every probabilistic polynomial time algorithm A there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that $\Pr \left[\text{Invert}_{A,f} \left(n \right) = 1 \right] \leq \mu \left(n \right).$

Notation
$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathbf{A} \left(\mathbf{f} \left(\mathbf{x} \right) \right) \in \mathbf{f}^{-1} \left(\mathbf{f} \left(\mathbf{x} \right) \right) \right] \leq \mu \left(\mathbf{n} \right)$$

Candidate

1.
$$f_{\text{mult}}$$
: $\{0,1\}^* \rightarrow \{0,1\}^*$

$$x \mapsto (x_1 \cdot x_2, |x_1|, |x_2|),$$

where $|\mathbf{x}_1| = \lfloor |\mathbf{x}|/2 \rfloor$, $|\mathbf{x}_2| = \lceil |\mathbf{x}|/2 \rceil$, and identify bit strings and integers via binary representations.

Idea Multiplication easy, factoring hard

Definition of one-way permutation

$$f: \{0,1\}^* \rightarrow \{0,1\}^*$$
 length preserving, if for all $x | f(x) | = |x|$.

$$f_n := f_{[0,1]^n}$$
, restriction of f to $\{0,1\}^n$.

Definition 2.8 A one-way function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is called one-way permutation, if

- 1. f is length-preserving,
- 2. for every $n \in \mathbb{N}$ the function f_n is a bijection.

One-time signatures

One-time signature forging game Sig-forge $_{\Delta,\Pi}^{one}(n)$

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1^n , pk and may ask single query m' to Sign_{sk} (·). It outputs pair (m, σ) , where $m \neq m'$.
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m,\sigma) = 1$.

Definition 2.8 Π is called existentially unforgeable under a single message attack or 1-time signature, if for every ppt adversary A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $Pr[Sig-forge^{one}_{\Delta \Pi}(n) = 1] \le \mu(n).$

Lamport's one-time signature

Construction 2.9 $f:\{0,1\}^* \rightarrow \{0,1\}^*$, signature scheme

 $\Pi_f = (Gen, Sign, Vrfy)$ for messages of length I(n) defined as:

Gen(1ⁿ):
$$x_{i,b} \leftarrow \{0,1\}^n, y_{i,b} = f(x_{i,b}), i = 1,...,n, b \in \{0,1\}.$$

$$pk := \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{n,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{n,1} \end{pmatrix},$$

$$\begin{pmatrix} x_{4,0} & x_{2,0} & \cdots & x_{n,0} \end{pmatrix}$$

$$\mathbf{sk} := \left(\begin{array}{cccc} \mathbf{x}_{1,0} & \mathbf{x}_{2,0} & \cdots & \mathbf{x}_{n,0} \\ \mathbf{x}_{1,1} & \mathbf{x}_{2,1} & \cdots & \mathbf{x}_{n,1} \end{array} \right),$$

Sign_{sk} (m): output
$$\sigma := (x_{1,m_1}, \dots, x_{n,m_n}), m = m_1 \cdots m_n$$
.

$$Vrfy_{pk}(m,\sigma)$$
: output = 1 $\Leftrightarrow y_{i,m_i} = f(x_{i,m_i})$ for $i = 1,...,n$.

Lamport's one-time signature

Theorem 2.10 If f is a one-way function, then $\Pi_{\rm f}$ from Construction 2.9 is a 1-time signature.

 $m' := message whose signature is requested by A <math>(m,\sigma) := A's final output$

Adverary A outputs forgery at (i,b),if

- $Vrfy_{pk}(m,\sigma) = 1$
- $m_i = b$ and $m_i \neq m'_i$

From forger to inverter

I on input y*

- 1. Choose $i^* \leftarrow \{1,...,n\}, b^* \leftarrow \{0,1\}.$
- 2. For all $i \in \{1,...,n\}$, $b \in \{0,1\}$ with $(i,b) \neq (i^*,b^*)$ do choose $x_{i,b} \leftarrow \{0,1\}^n$, set $y_{i,b} := f(x_{i,b}), y_{i^*,b^*} := y^*$
- 4. When A requests a signature on message m':
 - if $m'_{i^*} = b^*$, stop
 - otherwise return the correct signature $\sigma = (x_{1,m'_1},...,x_{n,m'_n})$
- 5. When A outputs (m, σ) with $\sigma = (x_1, ..., x_n)$
 - if A outputs a forgery at (i*,b*), output x_{i*}.

What have we achieved, what's missing?

- just a one-time signature, where
- keys are longer than messages
- need to decouple key and message length
- leads to simple, but inefficient and cumbersome signature scheme for messages of fixed, but arbitrary length
- these show that secure signatures schemes can be constructed from 1-way functions
- constructions on other simpler ingredients also known
- key ingredient will be collision-resistant hash functions

28

Hash functions

Definition 2.11 A hash function is a pair $\Pi = (Gen, H)$ of ppts, where

- 1. $Gen(1^n)$ takes as input 1^n and outputs a key s.
- 2. H is deterministic, it takes as input 1^n , a key s, and $x \in \{0,1\}^*$. There is a polynomial $I:\mathbb{N} \to \mathbb{N}$ such that if s was generated with input 1^n , then $H(s,x) \in \{0,1\}^{I(n)}$. Write $H^s(x)$ for H(s,x).

If H^s is defined only for inputs $x \in \left\{0,1\right\}^{l'(n)}$ for some polynomial l', then Π is a fixed-length hash function for inputs of length l'(n).

The collision-finding game

Collision-finding game Hash-coll_{A, Π} (n)

- 1. $s \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ and s. It outputs x,x' (with length I'(n) if Π is fixed-length).
- 3. Output of experiment is 1, if and only if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$. Say A has found collision.

Definition 2.12 $\Pi=\left(\text{Gen},H\right)$ called collision-resistant, if for every probabilistic polynomial time adversary A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$Pr[Hash-coll_{A,\Pi}(n)=1] \leq \mu(n).$$

Weaker notions

1. coll.-res. ...

2. 2^{nd} -preimage res. given s,x, find $x' \neq x$ with $H^{s}(x) = H^{s}(x')$

3. pre-image res. given $s,y = H^s(x)$, find x' with $H^s(x') = y$

Fact Under appropriate assumptions coll.res. \Rightarrow 2nd-preimage res. \Rightarrow pre-image res.

A generic attack & birthday paradoxon

$$H^{s}: \{0,1\}^{*} \to \{0,1\}^{n} \text{ for } s \in \{0,1\}^{n}$$

On input $s \in \{0,1\}^n$

- 1. Choose $q \in \mathbb{N}$
- 2. $x_1, ..., x_q \leftarrow \{0,1\}^n, y_i := H^s(x_i)$
- 3. if there exist i,j,i \neq j, such that $y_i = y_j$, output (x_i, x_j) , otherwise output \perp .

Fact Assume that for all $x_1, \dots, x_q \in \left\{0,1\right\}^*$ pairwise distinct and all $y_1, \dots, y_q \in \left\{0,1\right\}^n$ we have $\Pr\left[\forall i : H^s\left(x_i\right) = y_i\right] = 2^{-qn}$, then $\frac{q(q-1)}{2^{n+2}} \leq \Pr\left[\exists i,j \in \{1,\dots,q\}, i \neq j : y_i = y_j\right] \leq \frac{q(q-1)}{2^{n+1}}.$

Hash-and-Sign

 $\Upsilon' = \left(\text{Gen',Mac',Vrfy'}\right) \text{ sig. scheme with message length } I\left(n\right),$ $\Pi = \left(\text{Gen}_{H},H\right) \text{ hash function with hash length } I\left(n\right).$

Construction 2.13 Sig. scheme $\Upsilon = (Gen, Sign, Vrfy)$ defined as:

$$\begin{split} \text{Gen}\big(1^{\text{n}}\big) \colon & (\text{pk',sk'}) \leftarrow \text{Gen'}\big(1^{\text{n}}\big), \text{s} \leftarrow \text{Gen}_{\text{H}}\big(1^{\text{n}}\big), \\ & \text{pk} = (\text{pk',s}), \text{sk} = \text{sk'} \\ & \text{Sign}_{\text{sk}}\left(m\right) \colon & \sigma \coloneqq \text{Sign'}_{\text{sk}}\left(H^{\text{s}}\left(m\right)\right). \\ & \text{Vrfy}_{\text{pk}}\left(m,\sigma\right) & \text{output} = 1 \Leftrightarrow 1 = \text{Vrfy'}_{\text{pk'}}\left(H^{\text{s}}\left(m\right),\sigma\right). \end{split}$$

Theorem 2.14 If Υ' is secure and Π is collision-resistant, then Υ is secure.

Hash-and-Sign

 $A := adversary against \Upsilon$

Signature forging game Sign-forge_{A, Υ} (n)

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ,pk and oracle access to Sign_{sk} (·). It outputs pair (m, σ). Q: = set of queries made by A to Sign_{sk} (·).
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m, \sigma) = 1$, and (2) $m \notin Q$.

Coll :=
$$\exists m' \in \mathcal{Q} : H^s(m') = H^s(m)$$

$$\begin{split} \text{Pr} \Big[\text{Sign-forge}_{A,\Upsilon}(n) = 1 \Big] & \leq & \text{Pr} \Big[\text{Sign-forge}_{A,\Upsilon}(n) = 1 \Big| \neg \text{Coll} \Big] \\ & + & \text{Pr} \Big[\text{Coll} \Big] \end{aligned}$$

Collision-finder A₁

A_1 on input 1^n and $s \leftarrow Gen_H$

- 1. Run Gen' to obtain key (pk', sk').
- 2. Simulate A. Whenever A queries its Sign-oracle $Sign_{sk}(\cdot)$ on a message m', do:
 - a) Compute $h: = H^s(m')$.
 - b) Compute $\sigma' := Sign_{sk'}(h)$ and return σ' to A.
- 3. Let Q be the set of queries made by A and let (m,σ) be A's answer. If there is an $m' \in Q$ with $H^s(m') = H^s(m)$, return the pair (m,m'), otherwise return "failure".

Sign-forger A₂

A_2 on input 1ⁿ and and oracle access to Sign'_{sk'} (\cdot)

- Run Gen_H to obtain key s.
- 2. Simulate A. Whenever A queries its Sign-oracle Sign_{sk} (\cdot) on a message m', do:
 - a) Compute $h: = H^s(m')$.
 - b) Query Sign'_{sk'}(·) on input h to obtain $\sigma' := Sign'_{sk'}(h)$, return σ' to A.
- 3. Let Q be the set of queries made by A. If A returns a pair (m,t) such that $H^s(m) \neq H^s(m')$ for all $m' \in Q$, then return pair $(H^s(m),t)$, otherwise return "failure".

Stateful signatures

Definition 2.15 A stateful signature scheme Π is a triple of probabilistic polynomial time algorithms (ppts) (Gen,Sign,Vrfy), where

- 1. Gen(1ⁿ) outputs a key pair (pk,sk) with |pk|, $|sk| \ge n$ and a state s_0 .
- 2. Sign on input a secret key sk, a state s_{i-1} , and message $m \in \{0,1\}^*$, outputs a signature σ and a state s_i .
- 3. Vrfy takes as input a public key pk, a message $m \in \{0,1\}^*$, and a signature σ . It ouputs $b \in \{0,1\}$.
- For every key pair (pk,sk), state s_0 , and message m: $Vrfy_{pk} \left(m, Sign_{sk,s_{i-1}} \left(m \right) \right) = 1$.

Stateful signatures - remarks

- 1. If (Gen, Sign, Vrfy) is such that for every (pk, sk) output by $Gen(1^n)$, algorithm $Sign_{sk}$ is only defined for $m \in \{0,1\}^{l(n)}$, then we say that (Gen, Sign, Vrfy) is a stateful signature scheme for messages of length l(n).
- 2. The verfication algorithm does not need the state to verify signatures.

From 1-time signatures to stateful signatures

 $\Pi = (Gen, Sign, Vrfy)$ (1-time) signature scheme.

I = I(n) := number of signatures to be computed (known in advance)

 $\Pi' = (Gen', Sign', Vrfy)$

Gen' runs Gen to obtain I pairs (pk_i,sk_i), state s set to 1. pk is the sequence of public keys pk_i, sk is the sequence of secret keys s_i.

Sign' on input sk,s and message m, sets $\sigma \leftarrow \text{Sign}_{sk_s}$ (m), s: = s + 1.

Vrfy' on input (m,σ) outputs 1, iff there is an $i \in \{1,...,l\}$ such that $Vrfy_{pk_i}(m,\sigma)=1$.

From 1-time signatures to stateful signatures

 Π = (Gen,Sign,Vrfy) (1-time) signature scheme for messages of length 2n and such that Gen(1ⁿ) outputs public keys of length n.

 $\Pi' = (Gen', Sign', Vrfy')$, stateful for messages of length n.

Gen' runs Gen to obtain a pair (pk,sk) = (pk₁,sk₁), state s is the empty string ϵ .

Sign' on input sk, s and message m_i , runs Gen to obtain (pk_{i+1}, sk_{i+1}) , $\sigma_i \leftarrow Sign_{sk_i}(m_i \parallel pk_{i+1})$ and add $(m_i, pk_{i+1}, sk_{i+1}, \sigma_i)$ to the state. The signature for m_i is $\{(m_i, pk_{i+1}, \sigma_i)\}_{i=1}^{i-1}$ and (pk_{i+1}, σ_i) .

Vrfy' on input $(pk_{i+1}, \sigma_i, \{(m_j, pk_{j+1}, \sigma_j)\}_{j=1}^{i-1})$ outputs 1, iff $Vrfy_{pk_j}(m_j \parallel pk_{j+1}, \sigma_j) = 1$ for j = 1, ..., i.

Tree-based signatures

 Π = (Gen,Sign,Vrfy) (1-time) signature scheme for messages of length 2n and such that Gen(1ⁿ) outputs public keys of length n.

For $m \in \{0,1\}^*$ denote by m_i the prefix of m of length i.

 $\Pi^* = (Gen^*, Sign^*, Vrfy^*)$ is a stateful signature scheme for messages of length n.

Gen* on input 1ⁿ: compute $(pk_{\epsilon}, sk_{\epsilon})$, output pubic ley pk_{ϵ} and state $s = sk_{\epsilon}$.

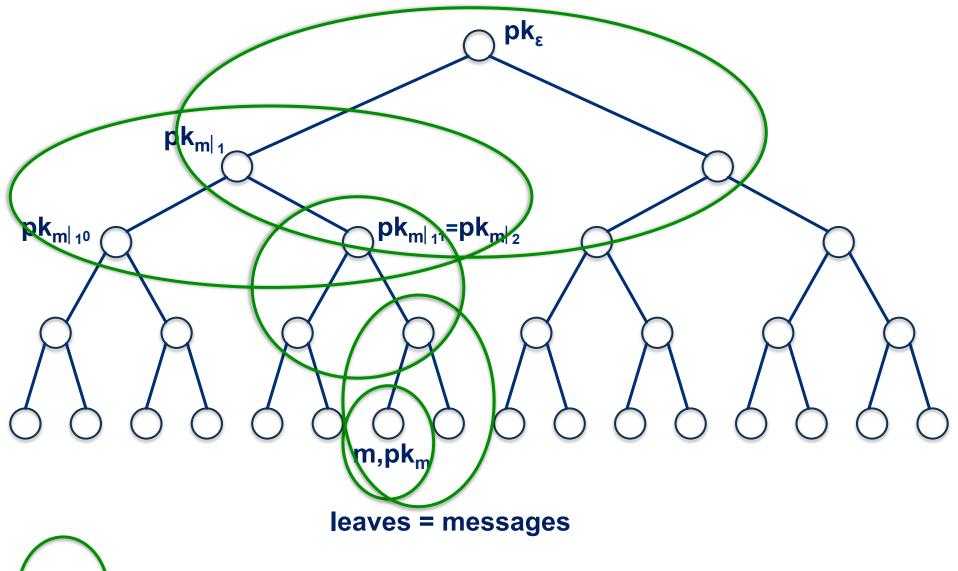
Tree-based signatures - Sign

Sign* on input $m \in \{0,1\}^n$ and state:

- 1. for i = 0 to n 1:
 - if $\mathsf{pk}_{\mathsf{m}_{|_{i}}0},\mathsf{pk}_{\mathsf{m}_{|_{i}}1}$, and $\sigma_{\mathsf{m}_{|_{i}}}$ are not in the state, compute $(\mathsf{pk}_{\mathsf{m}_{|_{i}}0},\mathsf{sk}_{\mathsf{m}_{|_{i}}0}) \leftarrow \mathsf{Gen}(1^{\mathsf{n}}), (\mathsf{pk}_{\mathsf{m}_{|_{i}}1},\mathsf{sk}_{\mathsf{m}_{|_{i}}1}) \leftarrow \mathsf{Gen}(1^{\mathsf{n}}), \text{ and } \\ \sigma_{\mathsf{m}_{|_{i}}} \leftarrow \mathsf{Sign}_{\mathsf{sk}_{\mathsf{m}_{|_{i}}}} (\mathsf{pk}_{\mathsf{m}_{|_{i}}0} \, \|\, \mathsf{pk}_{\mathsf{m}_{|_{i}}1}). \text{ Add these values to state.}$
- 2. if σ_m is not in the state, compute $\sigma_m \leftarrow \text{Sign}_{sk_m}$ (m).
- 3. output the signature $(\{(\sigma_{m|_{i}}, pk_{m|_{i}0}, pk_{m|_{i}1})\}_{i=0}^{n-1}, \sigma_{m})$.

Remark: Sign* uses each key on at most one message.

Tree-based signatures



key in parent node to compute signature of concatenation of public keys in children.

Tree-based signatures - Vrfy

Vrfy* on input a public key pk_{ϵ} , message m, and signature $(\{(\sigma_{m|_{\epsilon}},pk_{m|_{\epsilon}},pk_{m|_{\epsilon}})\}_{i=0}^{n-1},\sigma_{m})$, output 1, iff

- 1. $Vrfy_{pk_{m|_{i}}}(pk_{m|_{i}0} || pk_{m|_{i}1}, \sigma_{m|_{i}}) = 1 \text{ for } i = 0, ..., n-1$
- 2. $Vrfy_{pk_m}(m, \sigma_m) = 1$.

Theorem 2.16 If Π is a one-time signature, then Π^* is a secure signature scheme for messages of length n.

From A* to A (1)

A on input public key pk:

- choose random index i^{*} ← {1,...,I^{*}}. Construct list pk¹,...,pk^{1^{*}} of keys as follows:
 - set $pk^{i^*} := pk$
 - for $i \neq i^*$, compute (pk^i, sk^i) ← Gen(1ⁿ).
- run A* on input pk = pk¹. When A* requests a signature on m, do:
 - 1. for i = 0 to n 1:
 - if the values $pk_{m_{|,0}}, pk_{m_{|,1}}$, and $\sigma_{m_{|,}}$ have not been defined, set $pk_{m_{|,0}}, pk_{m_{|,1}}$ to the next unused keys pk^{j}, pk^{j+1} , and compute signature $\sigma_{m_{|,}}$ on $pk_{m_{|,0}} \parallel pk_{m_{|,1}}$ with key $pk_{m_{|,}}$.
 - 2. if σ_m is not yet defined, compute a signature σ_m on m with key pk_m.
 - 3. give $(\{(\sigma_{m|_{i}}, pk_{m|_{i}0}, pk_{m|_{i}1})\}_{i=0}^{n-1}, \sigma_{m})$ to A^{*} .

From A* to A (2)

- if A* outputs a valid signature $(\{(\sigma'_{m|_i},pk'_{m|_i0},pk'_{m|_i1})\}_{i=0}^{n-1},\sigma'_m)$ on message m, then
 - case 1: if there is a $j \le n-1$ such that $pk'_{m_{j,0}} \ne pk_{m_{j,0}}$ or $pk'_{m_{j,1}} \ne pk_{m_{j,1}}, \text{ take minimal } j \text{ and let } i \text{ be such that}$ $pk^{i} = pk'_{m_{j}} = pk_{m_{j}}. \text{ If } i = i^{*}, \text{ output } (pk'_{m_{j,0}} \parallel pk'_{m_{j,1}}, \sigma'_{m_{j}}).$
 - case 2: if case 1 does not hold, then $pk'_{m} = pk_{m}$. Let i be such that $pk^{i} = pk_{m}$. If $i = i^{*}$, output (m, σ'_{m}) .

RSA signatures - prerequisits

$$\mathbb{Z}_{N}$$
 := ring of integers modulo N \mathbb{Z}_{N}^{*} := $\left\{a \in \mathbb{Z}_{N} : \gcd(a,N) = 1\right\}$ $\phi(N)$:= $\left|\mathbb{Z}_{N}^{*}\right|$

$$gcd(a,m) = 1 \Rightarrow \exists u, v \in \mathbb{Z} u \cdot a + v \cdot m = 1 \text{ (EEA)}$$

 $\Rightarrow u \cdot a = 1 \mod m$
 $\Rightarrow u = a^{-1} \mod m$

$$\mathbf{N} = \prod_{i=1}^{K} \mathbf{p}_{i}^{\mathbf{e}_{i}} \quad \Rightarrow \quad \phi\left(\mathbf{N}\right) = \prod_{i=1}^{K} \left(\mathbf{p}_{i}^{\mathbf{e}_{i}} - \mathbf{p}_{i}^{\mathbf{e}_{i}-1}\right) = \mathbf{N} \cdot \prod_{i=1}^{K} \left(1 - 1/\mathbf{p}_{i}\right) \cdot$$

RSA signatures

```
\begin{split} \text{Gen}\big(1^n\big) \colon & \text{choose 2 random primes p,q} \in \left[2^{n-1},2^n-1\right], \\ & \text{N} := p \cdot q, e \leftarrow \mathbb{Z}_{\phi(N)}^*, d := e^{-1} \ \text{mod} \ \phi\left(N\right), \\ & \text{pk} := \left(N,e\right), \text{sk} := \left(N,d\right). \\ & \text{Sign}_{\text{sk}}\left(m\right) & \text{m} \in \left\{0,1\right\}^{2n-2} \ \text{interpreted as element in } \mathbb{Z}_N, \\ & \sigma := m^d \ \text{mod} \ N. \\ & \text{Vrfy}_{\text{pk}}\left(m,\sigma\right) & \text{output 1, if and only if } \sigma^e = m \ \text{mod} \ N. \end{split}
```

RSA signatures - forgeries

existential forgeries

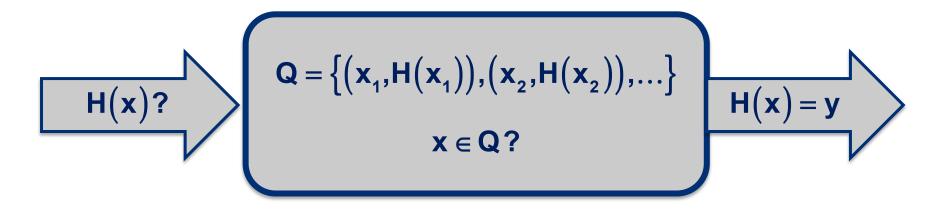
- Sign_{sk}(0) = 0
- Sign_{sk} (1) = 1
- $\operatorname{Sign}_{sk}(-1) = -1$

selective forgery of $Sign_{sk}(m)$

- query signature oracle with input m̂ := 2^em mod N
 and obtain σ̂.
- compute $\sigma = 2^{-1}\hat{\sigma} \mod N$.

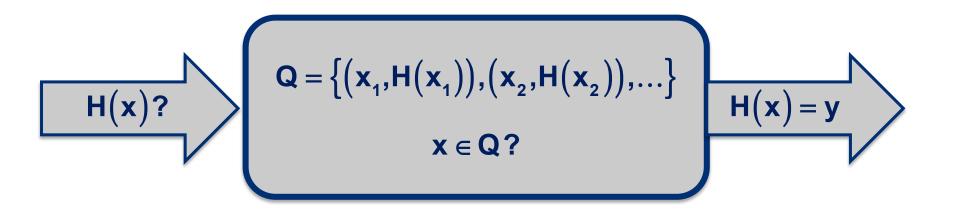
Random oracle model (ROM)

Goal Construct $H: \{0,1\}^* \to R, |R| < \infty$, "random" function.



- If $x = x_i$ for $x_i \in Q$, return $H(x_i)$.
- If $x \neq x$, for all $x \in Q$,
 - a) $y \leftarrow R$
 - b) return H(x) = y
 - c) add pair (x,H(x)) to Q

Random oracle model (ROM)



- Random oracle model idealization of
 - one-way functions
 - random functions
 - collision-resistant hash functions.
- In practice they can not be implemented in this form.
- Often collision-resistant hash functions used instead.

RSA-Full-Domain-Hash (RSA-FDH)

By Gen denote an algorithm that on input 1^n computes 2 random primes $p,q \in \left[2^{n-1},2^n-1\right], p \neq q$, sets $N=p \cdot q$, chooses $e \leftarrow Z_{\phi(N)}^*$, sets $d := e^{-1} \mod \phi(N)$, and outputs pk := (N,e), sk := (N,d).

Construction 2.17 (RSA-FDH)

- Run Gen(1ⁿ) to obtain pk := (N,e) and sk := (N,d). Let H: $\{0,1\}^* \to \mathbb{Z}_N$ be modeled as a random oracle.
- Sign on input $m \in \{0,1\}^*$ and (N,d) outputs $\sigma := (H(m))^d \mod N.$
- Vrfy on input m, σ , (N,e) outputs 1 $\Leftrightarrow \sigma^e = H(m) \mod N$.

RSA assumption

RSA inverting game RSA-inv_{A,Gen} (n)

- 1. Run Gen to obtain (N,e).
- 2. $y \leftarrow \mathbb{Z}_{N}$.
- 3. A is given (N,e) and y. A outputs $x \in \mathbb{Z}_N$.
- 4. Output of experiment is 1, if and only if $x^e = y \mod N$.

Write RSA-inv_{A.Gen} (n) = 1, if output is 1.

Definition 2.18 The RSA problem is hard relative to the generation algorithm Gen if for every ppt adversary A there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that

$$Pr[RSA-inv_{A,Gen}(n)=1] \le \mu(n).$$

RSA assumption

Construction 2.19 (RSA-FDH)

- Run Gen (1^n) to obtain pk := (N,e) and sk := (N,d). Let $H: \{0,1\}^* \to \mathbb{Z}_N$ be modeled as a random oracle.
- Sign on input $m \in \{0,1\}^*$ and (N,d) outputs $\sigma := (H(m))^{\alpha} \mod N$.
- on input m, σ ,(N,e) output 1 $\Leftrightarrow \sigma^e = H(m) \mod N$.

Theorem 2.20 If the RSA problem is hard relative to the generation algorithm Gen, then RSA-FDH (Construction 2.19) is existentially unforgeable under an adaptive chosen-message attack.

From forger to inverter

Signature forging game Sig-forge_{A,II} (n)

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ,pk and oracle access to Sign_{sk} (·). It outputs pair (m, σ). \mathcal{Q} : = set of queries made by A to Sign_{sk} (·).
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m, \sigma) = 1$, and (2) $m \notin Q$.

Assume:

- 1. A never queries for the same hash value twice.
- 2. Before querying Sign_{sk}(·) on message m, A queries H(·) on m.

Let q = q(n) denote number of hash queries made A, q bounded by polynomial in n.

From forger to inverter

- 1. Choose $j \leftarrow \{1,...,q\}$.
- 2. Simulate A with public key (N,e). Table T stores triples (m_i, σ_i, y_i) with meaning that I has set $H(m_i) = y_i$ and $\sigma_i^e = y_i \mod N$.
- 3. When A makes i-th random oracle query $H(m_i)$, do
 - if i = j, return y^*
 - otherwise, $\sigma_i \leftarrow \mathbb{Z}_N, y_i := [\sigma_i^e \mod N]$, return y_i , add (m_i, σ_i, y_i) to T.

When A makes signature query $m = m_i$, do

- if i ≠ j, then T contains triple (m_i, σ_i, y_i) , return σ_i .
- if i = j, then abort experiment.
- 4. Let (m, σ) be A's output. If $m = m_j$ and $\sigma^e = y^* \mod N$, then output σ .

Certificates and trusted authorities

How can we guarantee that pk_A belongs to A?

- certificates from trusted authorities (TA)
- certificates are signatures
- leads to hierarchie of certificates/signatures
- must stop at (really) trusted authority