VI. Commitment schemes & oblivious transfer

What if you don't trust the auctioneer to keep bids to himself?

- You should not disclose your bid to the auctioneer or any other person until all bids are in. (hiding)
- Nobody should be able to modify their bids after placing them. (binding)
- ⇒ want a sealed electronic envelope!

Commitment schemes

Definition 6.1 Let $I: \mathbb{N} \to \mathbb{R}$ be a polynomial. A commitment scheme K for messages of length I(k) is a triple of ppts (Gen, Comm, Open), where

- 1. $Gen(1^k)$ outputs public parameters pp with $|pp| \ge k$.
- 2. Comm takes as input 1^k , public parameters $pp \in Gen(1^k)$, and a message $m \in \{0,1\}^{l(k)}$. It outputs a pair (c,d) of commitment c and open value d.
- 3. Open takes as input 1^k , public parameters $pp \in Gen(1^k)$, a commitment c, and an open value d. It ouputs $m \in \left\{0,1\right\}^{l(k)}$, or the failure symbol \perp .

For every k, every pp \in Gen(1^k), and every message $m \in \{0,1\}^{l(k)}$: Open_{pp} $(1^k, Comm_{pp}(1^k, m)) = m$.

Commitment schemes

For realizations message space often \mathbb{Z}_q rather then $\{0,1\}^{l(k)}$. Can easily modifyy this.

K commitment scheme for messages of length I(k), $pp \in Gen(1^k)$, and $m \in \{0,1\}^{I(k)}$. Define random variable R_m as follows:

- 1. $(c,d) \leftarrow Comm_{pp}(1^k,m)$
- 2. return c

Commitment schemes - Hiding

K commitment scheme for messages of length g(k), $pp \in Gen(1^k)$, and $m \in \{0,1\}^{l(k)}$. Define random variable R_m as follows:

```
R_m:
```

- 1. $(c,d) \leftarrow Comm_{pp}(1^k,m)$
- 2. return c

Definition 6.2 Let K be a commitment scheme for messages of length I(k). K is called (perfectly) hiding, if for all $k \in \mathbb{N}$, all $pp \in Gen(1^k)$, and all $m,m' \in \{0,1\}^{I(k)}$ the random variables R_m and $R_{m'}$ are distributed identically.

The forging game

K commitment scheme, A ppt

Commitment forging game Comm-forge_{A,K} (k)

- 1. $pp \leftarrow Gen(1^k)$.
- 2. $(c,d,\tilde{d}) \leftarrow A(1^k,pp)$
- 3. Output of experiment is 1, if and only if
 - (a) Open_{pp} $(1^k, c, d) \neq \perp \land Open_{pp} (1^k, c, \tilde{d}) \neq \perp$
 - (b) $Open_{pp}(1^k, c, d) \neq Open_{pp}(1^k, c, \tilde{d})$

Definition 6.3 Commitment scheme K is called (computationally) binding, if for every ppt adversary A there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that

$$Pr[Comm-forge_{A,K}(k)=1] \le \mu(k).$$

Pedersen commitment scheme

Gen

on input 1^k chooses primes p,q such that q|p-1 and $q>2^k$, chooses generator z of \mathbb{Z}_p^* and sets $g:=z^{p-1/q}$, chooses $e\leftarrow\mathbb{Z}_q^*$, sets $h:=g^e$ and pp:=(p,q,g,h)

Comm

on input 1^k , pp \in Gen (1^k) , and message $m \in \mathbb{Z}_q$:

- 1. $d' \leftarrow \mathbb{Z}_a, d := (m, d')$
- 2. $c := g^m h^{d'} \mod p$
- 3. output $(c,d) \in \mathbb{Z}_p^* \times (\mathbb{Z}_q \times \mathbb{Z}_q)$

Open

on input 1^k , $pp \in Gen(1^k)$, and $(c,d) \in \mathbb{Z}_p^* \times (\mathbb{Z}_q \times \mathbb{Z}_q)$, d = (m,d'), output m if $c = g^m h^{d'} \mod p$, otherwise output \perp .

The subgroup discrete logarithm problem

Let Gen be a ppt that on input 1^k

- choose primes p,q such that $q \mid p-1$ and $q \ge 2^k$
- chooses a generator z for \mathbb{Z}_p^* and sets $g := z^{(p-1)/q}$.

Let A be a ppt.

Subgroup DL game $SDL_{A,Gen}(k)$

- 1. Run Gen(1^k) to obtain (p,q,g).
- 2. $e \leftarrow \mathbb{Z}_{q}, h := g^{e} \mod p$.
- 3. A is given (p,q,g) and h. A outputs $e' \in \mathbb{Z}_q$.
- 4. Output of experiment is 1, if and only if $g^{e'} = h \mod p$.

Write
$$SDL_{A,Gen}(k) = 1$$
, if output is 1.

The subgroup discrete logarithm problem

- 1. Run Gen(1^k) to obtain (p,q,g).
- 2. $e \leftarrow \mathbb{Z}_a, h := g^e \mod p$.
- 3. A is given (p,q,g) and h. A outputs $e' \in \mathbb{Z}_q$.
- 4. Output of experiment is 1, if and only if $g^{e'} = h \mod p$.

Write $SDL_{A,Gen}(k) = 1$, if output is 1.

Definition 5.4 (restated) The SDL problem is hard relative to the generation algorithm Gen if for every ppt adversary A there is a negligible function $\mu: \mathbb{N} \to \mathbb{R}^+$ such that

$$Pr[SDL_{\Delta Gen}(k)=1] \leq \mu(n).$$

Pedersen commitment scheme

Theorem 6.4

- 1. The Pedersen commitment scheme is (perfectly) hiding.
- 2. If the SDL problem is hard relative to the generation algorithm Gen (ignoring the last element), then the Pedersen commitment scheme is (computationally) binding.

Commitment schemes and ∑-protocols

Fact Using trapdoor commitment schemes every Σ -protocol can be transformed into a three round interactive protocol that has (computational) perfect zero-knowledge.

Oblivious transfer – 1-out-of-2 (1/2-OT)

2 participants:

- sender
- receiver

```
sender's input: (x_0, x_1) \in \{0,1\}^* \times \{0,1\}^*
receiver's input: \sigma \in \{0,1\}
```

receiver obtains x_{σ} sender obtains nothing (= ε)

Goals:

- 1. receiver learns nothing about $x_{1-\sigma}$
- 2. sender learns nothing about σ

1/2-OT in an ideal world and security

- Want to achieve the same functionality without TTP!
- Possible under many assumptions!

Summary

- authenticity, non-repudiation, and digital signatures
- unforgeable signatures
- RSA signatures, insecurity, hash-then-sign
- one-time signatures and Lamport signatures
- stateful signatures, tree-based signatures
- random oracles and RSA full-domain hash
- identification protocols, cheating provers and verifiers
- Fiat-Shamir, square roots modulo N, factoring, and cheating provers
- interactive protocols, zero-knowledge, perfect
 zero-knowledge

Summary

- zero-knowledge protocols and cheating verifiers
- Fiat-Shamir protocol and zero-knowledge
- proofs of knowledge and ∑-protocols
- Schnorr identification protocol
- discrete logarithm and cheating provers
- Schnorr protocol and zero-knowledge
- Okamoto protocol and zero-knowledge
- witness indistinguishability and witness hiding
- commitment schemes