The Fiat-Shamir Heuristic and the Random Oracle Model

Nils Löken

Paderborn University 29. Juni 2016

Outline

- 1 Finding suitable hardness assumption
- 2 Proof protocol security under that assumption
- Proof signature security in random oracle model, rely on procotol security

The RSA Assumption

Idea: computing e-th roots modulo a composite number N is hard

The RSA Assumption

Formally: given ppt algorithm $\operatorname{GenRSA}(1^n) \to (N, e, d)$ for $N = p \cdot q$, p, q n-bit primes, e > 1 with $\gcd(e, \phi(N)) = 1$, $e \cdot d = 1$ mod N.

Game **RSA** – $inv_{A,GenRSA}(n)$:

- $z \leftarrow \mathbb{Z}_N^*$
- $x \leftarrow \mathcal{A}(N, e, z)$
- 4 output 1 if $x^e = z$, 0 otherwise

RSA assumption: for all ppt algos \mathcal{A} , there is a negligible function $\mu(\cdot)$ such that

$$\Pr[\mathsf{RSA} - \mathsf{inv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \leq \mu(n).$$

Protocol Security — Informally

Idea: An identification protocol is secure if it is hard for an adversary to impersonate a prover, even after having observed many protocol executions between honest parties. Introduce oracle $\mathsf{Trans}_{\mathsf{sk}} \to (R,f,y)$; models eavesdropping. Game (informally):

- Impersonator receives public key pk and gets access to Trans_{sk}, sends R and to challenger
- Challenger replies with uniform challenge *f*
- Impersonator responds with y and wins game if $y^e = R \cdot pk^f$ mod N

GQ-Ident Security under RSA Assumption

Idea: construct inverter ${\mathcal I}$ for RSA from impersonator ${\mathcal B}$ for GQ-Ident.

Inverter $\mathcal{I}(N, e, z)$:

- 1 params := (N, e), pk := z
- 2 run B(params, pk)
 - answer Trans_{sk} queries by invoking simulator (special honest verifier zero knowledge)
 - reply to R^* with $f^* \leftarrow \mathbb{Z}_e$
 - receive transcript y*
- if (R^*, f^*, y^*) is accepting, rewind \mathcal{B} to obtain transcript (R^*, f', y') , $f^* \neq f'$
- 4 apply extractor to transcripts to obtain x with $x^e = z$ (special soundness)
- 5 output x

GQ-Ident Security under RSA Assumption

Game **RSA** – $inv_{A.GenRSA}(n)$:

- $z \leftarrow \mathbb{Z}_N^*$
- $x \leftarrow \mathcal{A}(N, e, z)$
- 4 output 1 if $x^e = z$, 0 otherwise

RSA assumption: for all ppt algos \mathcal{A} , there is a negligible function $\mu(\cdot)$ such that

$$\Pr[\mathsf{RSA} - \mathsf{inv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \leq \mu(n).$$

GQ-Sig EUF-CMA in RO-Model under RSA Assumption

Idea: Use ppt forger $\mathcal A$ against GQ-Sig to construct ppt impersonator $\mathcal B$ against GQ-Ident.

GQ-Sig EUF-CMA in RO-Model under RSA Assumption

Simplifying assumptions:

- \blacksquare A never repeats queries to H twice
- Given signature (m, (f, y)), \mathcal{A} adversary does not query $H(y^e \cdot pk^{-f} \mod N, m)$
- If \mathcal{A} outputs (m, (f, y)), it has previously queried $H(y^e \cdot pk^{-f} \mod N, m)$

GQ-Sig EUF-CMA in RO-Model under RSA Assumption

q(n) polynomial upper bound on number of \mathcal{A} 's queries to H Impersonator $\mathcal{B}(\text{params}, \text{pk})$ with params = (N, e), pk = z:

- **1** j ← {1, . . . , q(n)}
- 2 run $\mathcal{A}(params, pk)$, answer queries
 - $H(R_i, m_i)$: if i = j, output R_j and receive challenge f^* ; else $f \leftarrow \mathbb{Z}_e$; give f or f^* to A
 - Sign_{sk}(m): query Trans_{sk}, receive (R, f, y), give $\sigma := (f, y)$ to $\mathcal A$
- **3** let $(m, \sigma = (f, y))$ be \mathcal{A} 's output; $R := y^e \cdot \operatorname{pk}^{-f} \mod N$
- 4 if $(R, m) = (R_j, m_j)$, output y; else abort

Literature

■ Katz, J., Lindell, Y. Introduction to modern cryptography, second edition. Chapman & Hall/CRC, 2015.