July 8th, 2016

submission due: July 19th, 2016: 11 a.m.

Cryptographic Protocols

SS 2016

Handout 6

Exercises marked (*) or (**) will be checked by tutors. We encourage submissions of solutions by small groups of up to four students.

Exercise 1 (4 points):

(**) An undirected graph G = (V, E) consists of the set of n vertices $V = \{1, ..., n\}$ and a set E of unordered pairs $\{i, j\} \subseteq V$ called edges. Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called isomorphic if there exists a bijective mapping $\pi : V_1 \to V_2$ such that $\{i, j\} \in E_1$ if and only if $\{\pi(i), \pi(j)\} \in E_2$. In this case we write $G_1 = \pi(G_2)$ or $G_1 \simeq G_2$. Else they are non-isomorphic. Furthermore, denote S_n the group of permutations on V.

Consider the following protocol for the language

$$GI := \{ \langle G_1, G_2 \rangle | G_1 \simeq G_2 \}$$

and prove, that it is perfect zero-knowledge.

Protocol: To prove the knowledge of π with $\pi(G_2) = G_1$ to V, the prover P runs the following protocol:

$$\underline{P(\langle G_1, G_2 \rangle, \pi)} \qquad \underline{V(\langle G_1, G_2 \rangle)}$$

$$\pi_c \leftarrow S_n$$

$$H := \pi_c(G_1)$$

$$b \leftarrow \{1, 2\}$$

$$\pi_r := \begin{cases} \pi_c & \text{if } b = 1 \\ \pi_c \circ \pi & \text{if } b = 2 \end{cases}$$

$$\xrightarrow{\pi_r}$$

$$\text{accepts iff } \pi_r(G_b) = H$$

Hint: You may assume that all automorphism groups of all relevant graphs only contain the identity, i. e. for graph G and permutation π $\pi(G) = G$ implies $\pi = 1_{S_n}$.

Exercise 2:

Let $GI := \{ \langle G_1, G_2 \rangle | G_1 \simeq G_2 \}$. Define the set of witnesses for $\langle G_1, G_2 \rangle$ as

$$W(\langle G_1, G_2 \rangle) = \{(\pi_1, \pi_2) \in S_n \times S_n | \pi_1(G_1) = \pi_2(G_2) \}.$$

Consider the following protocol:

Protocol: To prove the knowledge of witness (π_1, π_2) for $\langle G_1, G_2 \rangle$ to V, the prover P runs the following protocol:

$$\frac{P(\langle G_1, G_2 \rangle, \pi_1, \pi_2)}{\pi_c \leftarrow S_n} \qquad \qquad \frac{V(\langle G_1, G_2 \rangle)}{W(\langle G_1, G_2 \rangle)}$$

$$\pi_c \leftarrow S_n$$

$$G := \pi_1(G_1)$$

$$H := \pi_c(G)$$

$$\xrightarrow{H}$$

$$b \leftarrow \{1, 2\}$$

$$\xrightarrow{\pi_r}$$

$$\xrightarrow{\pi_r}$$

$$accepts iff $\pi_r(G_b) = H$$$

Prove, that this protocol is witness indistinguishable, that is for every witness $(\pi_1, \pi_2) \in W(\langle G_1, G_2 \rangle)$ and all possible transcripts (H, b, π_r) of this protocol on input $\langle G_1, G_2 \rangle$ there is an unique $\pi_c \in S_n$ chosen by P such that on input $\langle G_1, G_2 \rangle$ the transcript is (H, b, π_r) and V accepts.

Hint: You may assume that all automorphism groups of all relevant graphs only contain the identity, i. e. for graph G and permutation π $\pi(G) = G$ implies $\pi = 1_{S_n}$.

Exercise 3:

Provide an EQ-composition of Σ -protocols in the discrete logarithm setting, i. e. let g, g' be two generators of groups of prime order q; present a protocol that proves knowledge of witness x_A corresponding to values $X_{A,1} := g^{x_A}$ and $X_{A,2} := g'^{x_A}$ simultaneously. Prove that your protocol is complete, special sound and special honest verifier zero knowledge.