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Common tasks
Quality insurance
System monitoring
Anomaly detection (AD)

Machine Learning

Algorithms (e.g., DNNs in embedded system

D N N 5) in | N d ust riq | Superior results over other ML algorithms
i Computationally challenging tasks
Environment

Challenge: Reduce complexity?
Systematic approach needed
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‘ EML CHALLENGES — A CASE STUDY (POWER CONSUMPTION)

“Energy cost per 32b operation in a 45nm technology

= 3pJ for multiplication

* 640pJ for off-chip memory access

* Running a 1-billion connection NN @ 30Hz

- 30Hz * 1G * 640p) = 19.2W

Output Layer

DR. HASSAN G. MOHAMMADI 3



PROJECT GROUP EML 11 - GOALS

Develop approximated machine learning techniques and algorithms
" Approximations in both software and hardware

Implement and evaluate techniques on a modern system-on-chip
" Embedded platforms with ARM CPU cores and reconfigurable logic

Demonstrate performance for real industrial datasets
“ In cooperation with Weidmbuller Interface GmbH Weidmiiller <_

Evaluate the resiliency of the proposed techniques
" Test under worse (corner) conditions
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SAMPLE PROBLEMS — AD IN A WIND TURBINE

Rotor blade sensors malfunction
detection
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‘ RESEARCH APPROACH

Develop or modify ML techniques to be able to cope with resource
limitations (e.g., energy)
" Approximate DNN, SVN, KNN, Bagging, ...

Sparsity
—_—

Ex.: sparse DNNs which vastly reduce the amount of
computations in inference phase

Develop optimized accelerators for specific ML algorithms
* Accelerators for NNs and RMFs
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PROJECT GROUP EML 1

What you should bring with you

Interest in embedded system design (software or hardware)
Interest in machine learning techniques

Basic experience with programming embedded processors and/or
FPGAs is a plus

What you will gain

Knowledge about architectures and tools for systems-on-chip
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Practical experience in embedded system design and machine learning
algorithms

Expertise in the emerging field embedded machine learning (resource
constrained algorithms), Experience working with real datasets
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QUESTIONS?

Today after the presentations

Contact supervisors
* Dr. Hassan G. Mohammdi hgm@mail.upb.de
* Prof. Dr. Marco Platzner platzner@upb.de

https:/ /cs.uni-paderborn.de /ceg /teaching /courses/ss-2019 /pg-eml/
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10T SOLUTIONS -

Embedded devices
Big data era

44 Zettabyte by 2020 (IDC) 212 B connected devices by 2020 (IDC)

. Algorithm and libraries
Cloud services

Open source, easy to use, available in
Cheap, scalable computing .
severdl programming languages

Enormous potential for embedded machine

learning using edge devices




